
业务实践,数据分析应从细节入手_数据分析师
John Lucker是德勤咨询公司顾问,他20多年来都没有申请过一张新的信用卡。但是在过去的三年里,他却收到了超过300份来自银行,连锁酒店,各种无奇不有的团体的邀请。这是一个或被称为广撒网式营销的战术,他认为这也是“非常古老的战术 ”。
如果公司对他广撒网时候分析了他过去和现在的行为,比如他多长时间申请一次信用卡或者他与他们的各项业务有怎样的交集,那他们应该能够预料到他的反应然后把他们的祈祷留给下一个更可能的客户。 Lucker的个人经历使他确信,像这样的基本做法还需完善。 首席信息官们,是时候帮助你的营销部门来进行更好的分析了。
但是,通过使用预测分析法来实现更好的分析可不是个普通的任务, Lucker说。它需要先进的工具和技术,以及数据科学家的特质-革新和创造力。他们共同指引企业去回答“细碎”的问题 – 这是他给“关于你可能面临的最棘手业务问题的实际并且具体的问题”设定的标签。
细碎问题与战略目标相一致,与关键绩效指标(KPIs )相关 ,被设定为可操作性与信息性并重,有先见之明,而不是做事后诸葛亮。举个例子? Lucker建议道:
你的司的网络口碑怎么样,这将怎样影响未来的销售或产品?
你即将失去的1000个客户是谁,为什么?
影响客户忠诚度最强烈的因素是什么,为什么?你能做些什么来提高忠诚度?
你能否列出一个不好的客户体验带来的恶果而你又可以做些什么呢?
虽然列出问题清单只是个起点。“你应该将它们归类到相应的分组,整理观点和并使之聚焦在你的整体企业和客户策略,以及所期待的关键绩效指标上。”他说。
可视化可以帮助人们掌握复杂的数据,但构建有易于消化这一特性的可视化可能会非常棘手。在The Data Warehousing Institute的网络研讨会上,独立分析公司WiseAnalytics的总裁和创始人Lyndsay Wise概括出了能有所帮助的五条最佳操作。
1、简化表示层。 “给一个人过量的信息并不能使它变得更容易被接收。”Wise说。“自定义可视化建立在受众基础上。例如,数据科学家相对一般用户,有能力,而且而很有可能已经访问了不同类型的数据。此外,要让指标和任何动作项能够被很容易的找到。
2、为每一台设备进行设计。移动设备必须被分解为自助式商业智能(BI )应用和可视化两部分,Wise说。对于IT部门来说,这意味着要追随客户。 “商务解决方案[应该]反映外部和工作之余使用的技术类型。”她说。
3、突出显示重要数据。弄清楚为什么需要对数据进行可视化,这可以用以帮助确定如何去表现它。揭示随时间而动之变化的数据点,对画面而言重中之重,它可以帮助用户识别趋势和机会。
4、专注于一贯的设计。 “设定一个内部设计风格,以反映组织的品牌形象和你希望通过分析实现的东西。 ”Wise说。它对可能从一个可视化跳转到另一个的用户更为容易,但它也更容易按照需求维护和向外扩展。另外,你可以一次培训整个组织,她说。
5、不要忘了治理。数据可视化可以帮助打开整个企业的数据。将隐私和安全功能融入到设计中是至关重要的,并且需要提前规划。“这些数据因素非常重要,它可能影响定价,开发成本以及数据如何在部门间被使用。”Wise说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10