京公网安备 11010802034615号
经营许可证编号:京B2-20210330
业务实践,数据分析应从细节入手_数据分析师
John Lucker是德勤咨询公司顾问,他20多年来都没有申请过一张新的信用卡。但是在过去的三年里,他却收到了超过300份来自银行,连锁酒店,各种无奇不有的团体的邀请。这是一个或被称为广撒网式营销的战术,他认为这也是“非常古老的战术 ”。
如果公司对他广撒网时候分析了他过去和现在的行为,比如他多长时间申请一次信用卡或者他与他们的各项业务有怎样的交集,那他们应该能够预料到他的反应然后把他们的祈祷留给下一个更可能的客户。 Lucker的个人经历使他确信,像这样的基本做法还需完善。 首席信息官们,是时候帮助你的营销部门来进行更好的分析了。
但是,通过使用预测分析法来实现更好的分析可不是个普通的任务, Lucker说。它需要先进的工具和技术,以及数据科学家的特质-革新和创造力。他们共同指引企业去回答“细碎”的问题 – 这是他给“关于你可能面临的最棘手业务问题的实际并且具体的问题”设定的标签。
细碎问题与战略目标相一致,与关键绩效指标(KPIs )相关 ,被设定为可操作性与信息性并重,有先见之明,而不是做事后诸葛亮。举个例子? Lucker建议道:
你的司的网络口碑怎么样,这将怎样影响未来的销售或产品?
你即将失去的1000个客户是谁,为什么?
影响客户忠诚度最强烈的因素是什么,为什么?你能做些什么来提高忠诚度?
你能否列出一个不好的客户体验带来的恶果而你又可以做些什么呢?
虽然列出问题清单只是个起点。“你应该将它们归类到相应的分组,整理观点和并使之聚焦在你的整体企业和客户策略,以及所期待的关键绩效指标上。”他说。
可视化可以帮助人们掌握复杂的数据,但构建有易于消化这一特性的可视化可能会非常棘手。在The Data Warehousing Institute的网络研讨会上,独立分析公司WiseAnalytics的总裁和创始人Lyndsay Wise概括出了能有所帮助的五条最佳操作。
1、简化表示层。 “给一个人过量的信息并不能使它变得更容易被接收。”Wise说。“自定义可视化建立在受众基础上。例如,数据科学家相对一般用户,有能力,而且而很有可能已经访问了不同类型的数据。此外,要让指标和任何动作项能够被很容易的找到。
2、为每一台设备进行设计。移动设备必须被分解为自助式商业智能(BI )应用和可视化两部分,Wise说。对于IT部门来说,这意味着要追随客户。 “商务解决方案[应该]反映外部和工作之余使用的技术类型。”她说。
3、突出显示重要数据。弄清楚为什么需要对数据进行可视化,这可以用以帮助确定如何去表现它。揭示随时间而动之变化的数据点,对画面而言重中之重,它可以帮助用户识别趋势和机会。
4、专注于一贯的设计。 “设定一个内部设计风格,以反映组织的品牌形象和你希望通过分析实现的东西。 ”Wise说。它对可能从一个可视化跳转到另一个的用户更为容易,但它也更容易按照需求维护和向外扩展。另外,你可以一次培训整个组织,她说。
5、不要忘了治理。数据可视化可以帮助打开整个企业的数据。将隐私和安全功能融入到设计中是至关重要的,并且需要提前规划。“这些数据因素非常重要,它可能影响定价,开发成本以及数据如何在部门间被使用。”Wise说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02