
大数据:大变革,大竞争,大挑战_数据分析师
“大数据现在已经成为天大的事”。11月12日,美国政府公布新版大数据研究计划,白宫科技政策办公室主任霍尔德伦致辞说,他去年曾预测大数据将是件“大事”,现在来看保守了。
时间倒回到6月,斯诺登的41张幻灯片,让美国大数据监控项目“棱镜”浮出水面,令人不寒而栗。
2013年被一些专家称为“大数据元年”。对大数据时代的乐观和忧虑,在这一年充分展示。
“除了上帝,每个人都必须用数据说话。”不仅是人,整个世界都越来越数据化。信息革命深入发展,如潮的数据澎湃而至,数量之巨,种类之杂,来势之快,前所未有。
IDC(国际数据公司)估计,全球2012年产生数据总量约2.8泽字节。有人计算,这相当于3000多亿部时长2小时的高清电影,连着看7000多万年也看不完。
而这还只是序曲。更大的浪潮在后头。
IDC预测,未来几年,全球数据量每隔两年翻一番,2020年达到40泽字节。
大数据不单单是“数据的工业革命”,而是一场更深刻的科技和产业大变革的组成部分,是对未来大趋势、时代新特征的一种描述。大数据是推动这场大变革的重要动力,将成为促进经济社会转型新的关键资源。搜集、分析和运用指数级增长的庞大数据,将催生创新,为各行各业提供新的发展机遇,给人们日常生活带来改变。
星巴克有意推出的“大数据咖啡杯”就是个小小的例子。美国媒体报道,这家咖啡连锁巨头打算试验在一些咖啡杯中装上传感器,收集常客喝咖啡速度等数据,从而为喝咖啡较慢顾客提供保温效果好的杯子,提高其满意度和忠诚度。
业内人士认为,大数据的本质还不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。
畅销书《大数据时代》的作者、英国牛津大学数据科学家舍恩伯格认为,大数据是一种新的价值观和方法论,人们面对的不再是随机样本而是全体数据,不是精确性而是混杂性,不是因果关系而是相关关系。
“现有的认知和体系是建立在稀缺数据上的成果,人们思维和工作方式必须发生变革以适应大数据时代的到来。”舍恩伯格在其书中写道。
大数据被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视。多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。2013年,围绕大数据的国际竞争继续加码。
咨询公司益百利集团的研究显示,全球对大数据项目投资总额去年已达45亿欧元(约60亿美元),预计今明两年均会保持约40%的增长速度。
在美国,大数据已由热点词汇变成重点项目。去年3月,美国政府已公布2亿美元的《大数据研究发展计划》,今年11月再度公布涉及各级政府、私企、科研机构的多个大数据研究项目。美国国家卫生研究院、国家科学基金会等都参与其中,有评论称之为美国大数据战略2.0版。
在英国,虽然经济不景气、财政紧缩,但政府依然为大数据一掷千金。2013年初,英国商业、创新和技能部宣布将注资8亿英镑发展8类高新技术,其中1.89亿英镑(约3亿美元)用于大数据项目。
大数据在中国也已启动驶入“快车道”,政府、企业和科研院所正多方位布局。工信部的物联网“十二五”发展规划,将信息处理技术作为四项关键创新技术工程之一,其中包括海量数据存储、数据挖掘等。随着4G牌照在2013年末的发放,更高速的网络将带来更大的数据流,为政府和企业带来战略性资源。
“棱镜”今年曝光,让人看到大数据时代维护国家信息安全、保护个人隐私所面临的严峻挑战。
“棱镜门”让各国政府意识到“数据主权”的重要性,以及在网络和电信核心技术上依赖个别国家的恶果。必须加快自主创新以保护“数据主权”,已成为一些国家的共识。
英国《自然》杂志3月刊登的研究发现,只要有4个时间点和位置的数据就能确定一个人身份,准确率高达95%。这表明,大数据足以将一个人“描画”清晰,现有法律手段和核心技术对个人隐私的保护正在逐渐失效。
如何在大数据来袭中保持清醒和理性、有所创新和创造,对国家和个人来说同样是考验。
专家指出,大数据可望为中国经济转型升级发挥重要贡献,巨大的人口基数、经济体量和需求,意味着中国发展大数据拥有得天独厚的优势。但也应该看到,大数据具有价值密度低的特性,挖掘、分析等技术要求高。中国不能仅满足于做“世界数据中心”,应防止概念炒作,加强自主创新,进行前瞻性的制度设计等布局,顺势而为,将“中国创造”由机遇化为现实。
还应该警惕“迷信”大数据等倾向,认识到大数据分析可能存在的缺陷和不足。心理学家认为,大数据创造的模型会将人束缚在算法提供的选项中,过度依赖大数据分析也可能束缚创新。美国互联网活动家帕里泽称之为“互联网滤泡”:互联网个性化虽然带来方便,却将人们局限在自己过往行为模式的“气泡”中,无法触及海量信息带来的无尽可能。
大数据专家喜欢用莎士比亚“凡是过去,皆为序曲”来形容大数据分析的必然,但大数据提供的也只是参考答案而非最终答案。无论在小数据时代还是大数据时代,探索和创新精神都不应放弃,正如林肯所言,“预测未来最好的方法就是去创造未来”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10