
大数据信息技术应用两大趋势:资产化与决策智能化
近年来,全球数据的增长速度之快前所未有,数据类型也变得越来越多。一方面,海量的多样化数据对信息的有效存储、快速检索提出了挑战,另一方面,其中蕴藏的巨大商业价值也引发了对数据处理、分析的巨大需求。
对于大数据的概念,至今没有一个被业界广泛采纳的明确定义。根据大数据概念的内涵,并结合业界对大数据特性的普遍认同,我们提出以下概念:大数据是指需要通过快速获取、处理、分析以从中提取价值的海量、多样化的交易数据、交互数据与传感数据。
其中,海量和多样化是对大数据的数据量与数据类型的界定;快速是对大数据获取、处理、分析速度的要求;价值是对大数据获取、处理、分析的意义和目的;交易数据、交互数据与传感数据是大数据的来源,交易数据来自于企业ERP系统、各种POS终端,以及网上支付系统等业务系统;交互数据来自于移动通信记录以及社交媒体等;传感数据来自于GPS设备、RFID设备、视频监控设备等。
对大数据的利用将成为企业提高核心竞争力、抢占市场先机的关键。大数据将推动各个行业的信息技术应用产生两大重要的趋势:
一是数据资产化,信息部门将从成本中心转向利润中心。在大数据时代,数据渗透各个行业,渐渐成为企业战略资产。拥有数据的规模、活性,以及收集、运用数据的能力,将决定企业的核心竞争力。
二是决策智能化,企业战略将从业务驱动转向数据驱动。智能化决策是企业未来发展的方向。过去很多企业对自身经营发展的分析只停留在数据和信息的简单汇总层面,缺乏对客户、业务、营销、竞争等方面的深入分析。在大数据时代,企业通过挖掘大量内部和外部数据中所蕴含的信息,可以预测市场需求,进行智能化决策分析,从而制定更加行之有效的战略。
那么对于行业用户,应当怎样制定大数据应对策略以充分利用大数据所蕴含的巨大商业价值呢?以下两方面建议可供参考:
一方面,应当通过云平台实现数据大集中,形成企业数据资产。对于大型集团企业,各级子公司和分公司的ERP系统每天都在生成大量的交易数据和业务数据。分散在各个业务系统中的数据无法形成集中的资源池、不能互联互通,将严重影响对大数据的统一管理与价值挖掘。实现数据集中是大数据利用的第一步。
另一方面,应当深度分析挖掘大数据的价值,推动企业智能决策。行业用户应当重视对大数据的价值的深入分析与挖掘,推动企业决策机制从业务驱动向数据驱动转变,提高企业竞争力。根据预测,大数据挖掘和应用可以创造出超万亿美元的价值,数据将成为企业的利润之源,掌握了数据也就掌握了竞争力。企业必须更加注重数据的收集、整理、提取与分析。
未来3-5年,那些真正理解大数据并能利用大数据进行价值挖掘的企业,与对大数据价值挖掘重视程度不够的企业之间的差距进一步拉大。真正能够利用好大数据,并将其价值转化成生产力的企业将具备强劲的竞争优势,从而成为行业领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10