
QQ大数据:年轻人逃离北上广了吗_数据分析师
早在2000年,诺贝尔经济学奖得主斯蒂格里茨就说过:21世纪影响人类进程有两件大事,一是以美国为首的新技术革命;一是中国的城市化。
当下中国已经有一个基本共识,就是没有城市化就没有中国的现代化。但是,出于精英阶层对大城市化和所谓“城市病”的恐惧;出于文人思维中区域均衡发展的乌托邦梦想;出于权力的傲慢与自负,当代中国的城市化进程一直存在着规律与规划撕裂、人口流动与政府导向背离等现象。它一方面导致人口净流出地区的过度投资和过度城市化,造成各种资源的巨大浪费。不把钱当钱,一直在搞小城镇大跃进,西部大开发,就地城镇化。另一方面导致人口净流入地区,尤其是流入大城市人口的各项基本自由和权利得不到保障,不把人当人,无视人的自由选择和自由迁徙权利,大城市想尽一切办法通过收容遣送(已废除)、户籍管制、学籍限制、产业强迁等往外“赶人”。
但事实证明以西部大开发和小城镇战略为代表的“区域均衡发展战略”是失败的。在产出和投入比中,东部一直最高,中部其次,西部和东北一直垫底;在经济发展上,西部与东部的差距越来越大。西部人口也持续外流。从国家统计局提供的数据看,在2001至2012年的11年中,河南、四川、安徽、贵州、广西等五个中西部省份出现了人口净减少。
而日前QQ基于8亿多活跃用户,通过大数据分析首次披露“逃离北上广”数据图。数据显示,2014年1月16日至2月1日,共计4907万人从北上广深四城回到全国各地,占四地总用户数的51%。节后,约1070万的人真正逃离了北上广深,逃离率为11%,其中,北京又以18%的逃离率成为人们最想逃离的城市。其余的人选择继续他们的打拼之路,再次离开亲人,义无反顾踏上回归北上广之路。
从2014年2月2日至2月25日,1994万用户在2014年首次从全国各地来到北上广深,新增率达到21%。其中近7成是18至29岁的年轻人,而北京凭借27%的涌入率,再次夺冠,成为人们最愿意来此打拼的城市。
解读规律探索规律坚守规律这样的知识求索,比解读政府工作报告往往更有意思也更有用,更能知道社会发展的潮流和方向。大数据是全数据,不带有任何取样的倾向性,也减少了取样的局限性。样本越大,真实准确率越高。有人提出,以QQ登录地作为统计根据,统计比例不会太科学,尤其是逃离部分,竞争力下降的中年以上农民工未必上QQ,这部分人处于自然规律和制造业萧条考量,应该才是逃离的主力,而新增部分应该是可信的,年轻人几乎很少不用QQ的。
这个分析有道理。也就是说,真正逃离北上广深的实际上不止11%,而“逃往”北上广深的21%,则比较接近真实数据。
但考虑到有关部门公布的2013年年末北京常住人口2114.8万;上海市常住人口2415.15万。广州估计1300万,深圳估计1100万左右,合计6930万,比QQ在这四城市的登录用户总数(4907÷51%=9621)还少2691万,当然这也许可以解释为多出部分为瞬间流动人口。再考虑到相当比例中年以上的农民工和中老年人不上QQ(这个比例也是确定的,就是QQ有8亿多活跃用户,全国13.7亿人,活跃用户与非活跃用户之比为8:5.7),因此我们可以推算,2013年底,北上广深四地活跃用户与非活跃用户分别为9621万和6855万。那么,包含瞬间流动人口在内,北上广深四城市2013年底的实际人口数量并非官方公布的6930万,而是高达1亿6476万。
考虑到北上广深的城市特征和年龄结构偏年轻的特征,而其余大量待在农村的人口不用QQ等,上述人口总数可以作适当修正,那么我们可以估计这四大城市的实际人口当也在1亿2000万上下,比官方公布的数据多出近一倍。
这个数据,可以从实际生活中得到验证。2013年某日在一个饭局上,某位从小和大大在一个大院里长大、其母亲对大大兄弟们还多有照顾的、对公共事务几乎不食人间烟火的生意人说,北京公安的朋友告诉他,北京的人口(含瞬间流动人口)实际上已经超过4千万。
为什么实际人口4千万,但官方数据只有2100多万?瞬间流动人口没有计入只是一部分原因(因为不可能那么多),还有一部分原因我猜是因为官方的主流意识形态一直在以资源有限理论控制大城市人口,实际人口与他们想控制的人口规模差别太大,将会揭示资源有限理论和人口控制理论的谎言破产。这个理论一破产,再提控制大城市人口就没有依据了,而且因为日积月累积重难返,他们将面临如何解决流动儿童就学、高考等巨大现实压力。
我们再来看“逃往”北上广深的人群。QQ大数据显示,1994万用户年后首次从全国各地来到北上广深四地。请注意,这里不含刚毕业的700多万大学生(学生6、7月才离校),大学生留在这四地的比例达到一半以上。智联招聘根据简历库数据分析显示,高校毕业生初次就业集中在北京、上海、广州、深圳四大城市的比例高达54.1%,毕业三年后在这四大城市就业的更是高达57.3%。
也就是说,每年北上广深四大城市新增就业人口将达到1994+350=2344万,而流出人口则近半。这2344万是个什么概念?国家统计局数据显示,2002年至2011年,中国城镇化率以平均每年1.35个百分点的速度发展,城镇人口平均每年增长2096万人。(2012年8月17日中国新闻网)也就是说,每年新进入北上广深四大城市的人口总量超过每年从农村进入城市的人口总量。
这样一分析,中国的城市化路径就变得很清晰了:中国的城市化过程,不仅是农村包围城市、农民成为市民的过程,而且是从小城市到大城市的过程。相当多人,包括大学毕业生,包括刚洗脚离田的青年农民,都是一步到位先进入大城市,然后其中一半左右的人,在经过大城市多年的熬煎与洗礼之后,因为种种原因再向中小城市分散。而大部分的人,则留在了大城市!QQ大数据表明,节后未返回北上广深的人群,大部分流向了山东、河南、湖南、安徽以及除广州深圳外的广东其他地区,在家乡附近的二三线城市找到了他们新的天地。
这一切说明了什么?说明市场规律不听领导和决策的指挥棒,反过来则说明决策不尊重公民自由、不尊重市场规律。如今我们三四线以下城市大跃进已经制造了大量空城,留下了巨额债务,给未来中国经济社会留下巨大隐患,但我们仍然在意气风发地“深入实施区域发展总体战略,优先推进西部大开发,全面振兴东北地区等老工业基地……”(《2014年政府工作报告》)我们仍然在以大无畏的精神说:“北京人口调控的当务之急是要痛下决心,坚决遏制住人口无序过快增长的势头,要抓好以业控人,坚决淘汰吸引流动人口过多的产业。”
城市化是经济自由和个人自由的必然结果,大城市化是资源节约、效率提高、人类自由与能量充分施展的必然要求和必然结果,也是浩浩荡荡势不可挡的全球性规律,顺之者繁荣昌盛,逆之者萧条衰败。任何把城市化当成经济增长、“城乡均衡发展”和“疏散大城市人口”的目的,最后都一定会遭遇失败的命运。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02