
只有合适的数据才能获得ROI_数据分析师
应用业务中的很多分析方法,比如下载量跟踪和IAP分析可以为应用开发商带来很好的效果,比如对购买过程,用户早期离开原因,或者使用率不高等的分析,都可以为应用带来足够的收入。
分析还可以在市场资源之间做出对比甚至在创意之间进行对比(比如哪个广告更有效率?)
这可以让开发商们知道哪种市场资源可以给他们的应用带来什么类型的用户以及用户的行为规律。
但是,当你要为产品推广并寻找数据的时候,应该注意哪些呢?
获得足够的数据
如果你的游戏需要靠IAP挣钱,那么就得保证有足够的用户量才能够实现盈利。
如果只有2000次下载,而且你觉得可以了解用户的习惯,那只能说,这个数量是远远不够的。
我曾遇到很多客户说用户或者广告资源都是基于很小的样本群体,这样数据分析得出的结果只能带来灾难。
什么才是你的KPI(关键绩效指标)?
很多的公司都把产品组和营销团队分离开来。产品团队专注于保证游戏质量带来的高参与度,营销人员则专注于为游戏带来最适合的玩家群。
相似的是,当说到数据的时候,你需要知道游戏处于哪个阶段而且要知道可以从什么地方提高。
KPI 1:首次消费时间
当然,理解为什么玩家在你的游戏中进行第一次消费的原因是非常重要的,因为这可以帮助你理解他们喜欢的游戏体验。
比如,如果你知道平均用户周期短于第一次消费的时间,那么你的游戏一定是有问题了。
不过,如何开发游戏并在KPI的基础上进行优化是非常复杂的。
大公司都有10到20人左右的内部分析团队专门对特定的游戏进行分析并找出有针对性的问题。
他们会观察哪个菜单界面需要被修改,如何促进玩家们早一点进行消费,以及用户获取策略等。他们还必须理解特殊游戏的销售盲点并进行优化。
KPI 2: 平均每用户终身收入(即每用户的LTV)
前7天和30天的ARPU非常的重要。这些可以告诉你什么时候才能赚回投入在市场营销和用户获取方面的开支。
了解用户的平均LTV也非常的重要,但“终身”可能是一个很长的时期。玩家们有可能对你的游戏感兴趣长达几个月甚至数年,但你的市场营销开支通常是早期投入较多,所以你需要知道什么时候才能够把钱赚回来。
KPI 3: 一次性用户比例
一次性用户比例(也就是首日保留率)能够很好的体验你的游戏对用户的吸引力。
比如,一次性用户比例达到60%的话,就意味着第二天有60%的玩家会离开你的游戏。
因此,对特定用户离开游戏的时间要足够重视,在不同渠道获取的用户以及现有用户之间做出对比。
找到自己的亮点
优化KPI是非常复杂的工作,没有人能够给你一个通用的优化游戏方案。重要的是要确保能够获得足够多的用户和用户游戏行为的数据。
一旦游戏进行了优化,就需要对游戏中的付费用户进行研究,然后找到这些用户的获取渠道以及他们的消费习惯和原因,争取最大化ROI.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16