京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据翻页的难点和技巧_数据分析师
大数据,如何优化方案做到性能与成本的平衡。我们经常会遇到一种Key-list类型数据, 如一个用户的好友关系 {“uid”:{1,2,3,4,5}},表示uid包含有5个好友;一条微博下面的评论id列表{“weibo_id”: {comment_id1, comment_id2……}},一个用户发表的微博id列表等。
在list长度较少时候,我们可以直接的使用数据库的翻页功能,如
|
1
|
SELECT * FROM LIST_TABLE LIMIT offset, row_count;
|
根据经验,在大部分场景下,单个业务的list数据长度99%在1000条以下,在数据规模较小时候,上面的方法非常适合。但剩下的1%的数据可能多达100万条,在数据规模较大的时候,当访问offset较大的数据,上述方法非常低效,但在实现方案的时候不能忽视这些超大数据集的问题,因此要实现一个适合各种变长list的翻页方案,考虑到数据的长尾问题,并没有简单高效的方案。这也体现了常说的80%+的时间在优化20%-的功能。
List数据访问模型常见的有两种方式
扶梯方式在导航上通常只提供上一页/下一页这两种模式,部分产品甚至不提供上一页功能,只提供一种“更多/more”的方式,也有下拉自动加载更多的方式,在技术上都可以归纳成扶梯方式。
(图:blogspot的导航条)
(图:很多瀑布流式的产品只提供一个more的导航条)
扶梯方式在技术实现上比较简单及高效,根据当前页最后一条的偏移往后获取一页即可,在MySQL可使用以下方法实现。
|
1
|
SELECT * FROM LIST_TABLE WHERE id > offset_id LIMIT n;
|
|
|
|
由于where条件中指定了位置,因此算法复杂度是O(log n)
另外一种数据获取方式在产品上体现成精确的翻页方式,如1,2,3……n,同时在导航上也可以由用户输入直达n页。国内大部分产品经理对电梯方式有特殊的喜好,如图
但电梯方式在技术实现上相对成本较高,当使用以下SQL时
|
1
|
SELECT * FROM LIST_TABLE LIMIT offset, row_count;
|
|
|
|
我们可以使用MySQL explain来分析,从下文可以看到,当offset=10000时候,实际上MySQL也扫描了10000行记录。
为什么会这样?在MySQL中,索引通常是b-tree方式(但存储引擎如InnoDB实际是b+tree),如图
从图中可以看到,使用电梯方式时候,当用户指定翻到第n页时候,并没有直接方法寻址到该位置,而是需要从第一楼逐个count,scan到 count*page时候,获取数据才真正开始,所以导致效率不高。对应的算法复杂度是O(n),n指offset,也就是page*count。
另外Offset并不能有效的缓存,这是由于
1、在数据存在新增及删除的情况下,只要有一条变化,原先的楼层可能会全部发生变化。在一个用户并发访问的场景,频繁变化的场景比较常见。
2、电梯使用比较离散,可能一个20万条的list,用户使用了一次电梯直达100楼之后就走了,这样即使缓存100楼之下全部数据也不能得到有效利用。
以上描述的场景属于单机版本,在数据规模较大时候,互联网系统通常使用分库的方式来保存,实现方法更为复杂。
在面向用户的产品中,数据分片通常会将同一用户的数据存在相同的分区,以便更有效率的获取当前用户的数据。如下图所示
(图:数据按用户uid进行hash拆分)
图中的不同年份的数据的格子是逻辑概念,实际上同一用户的数据是保存在一张表中。因此方案在常见的使用场景中存在很大不足,大部分产品用户只访问最 近产生的数据,历史的数据只有极小的概率被访问到,因此同一个区域内部的数据访问是非常不均匀,如图中2014年生成的属于热数据,2012年以前的属于 冷数据,只有极低的概率被访问到。但为了承担红色部分的访问,数据库通常需要高速昂贵的设备如SSD,因此上面方案所有的数据都需要存在SSD设备中,即 使这些数据已经不被访问。
简单的解决方案是按时间远近将数据进行进一步分区,如图。
注意在上图中使用时间方式sharding之后,在一个时间分区内,也需要用前一种方案将数据进行sharding,因为一个时间片区通常也无法用一台服务器容纳。
上面的方案较好的解决了具体场景对于key list访问性能及成本的平衡,但是它存在以下不足
数据按时间进行滚动无法全自动,需要较多人为介入或干预
数据时间维度需要根据访问数据及模型进行精巧的设计,如果希望实现一个公用的key-list服务来存储所有业务的数据,这个公用服务可能很难实现
为了实现电梯直达功能,需要增加额外的二级索引,比如2013年某用户总共有多少条记录
由于以上问题,尤其是二级索引的引入,显然它不是理想中的key list实现,后文继续介绍适合大数据翻页key list设计的一些思路及尝试。文章来源:CDA数据分析师认证官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31