
作者:刘早起
来源:早起Python
大家好,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看!
01数据查找
问:如何获得两个数组之间的相同元素
输入:
import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore") arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.intersect1d(arr1,arr2)
02数据修改
问:如何从一个数组中删除另一个数组存在的元素
输入:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.setdiff1d(arr1,arr2)
03数据修改
问:如何修改一个数组为只读模式
输入:
arr1 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr1.flags.writeable = False
04数据转换
问:如何将list转为numpy数组
输入:
a = [1,2,3,4,5]
答案:
a = [1,2,3,4,5] np.array(a)
05数据转换
输入:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
答案:
df.values
06数据分析
输入:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1的平均数为:%s" %np.mean(arr1)) print("arr1的中位数为:%s" %np.median(arr1)) print("arr1的方差为:%s" %np.var(arr1)) print("arr1的标准差为:%s" %np.std(arr1)) print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2)) print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
07数据抽样
问:如何使用numpy进行概率抽样
arr = np.array([1,2,3,4,5])
输入:
arr = np.array([1,2,3,4,5]) np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])
答案:
08数据创建
问:如何为数据创建副本
输入:
arr = np.array([1,2,3,4,5])
答案:
#对副本数据进行修改,不会影响到原始数据 arr = np.array([1,2,3,4,5]) arr1 = arr.copy()
09数据切片
问:如何对数组进行切片
输入:
arr = np.arange(10)
备注:从索引2开始到索引8停止,间隔为2
答案:
arr = np.arange(10) a = slice(2,8,2) arr[a] #等价于arr[2:8:2]
10字符串操作
问:如何使用NumPy操作字符串
输入:
str1 = ['I love'] str2 = [' Python']
答案:
#拼接字符串 str1 = ['I love'] str2 = [' Python'] print(np.char.add(str1,str2)) #大写首字母 str3 = np.char.add(str1,str2) print(np.char.title(str3))
以上就是我总结的NumPy经典20题中的10题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路,下一篇继续给你列出另外10题哈!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29