京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:豌豆花下猫
来源:Python猫
python有一项默认的做法,很多编程语言都没有——它的所有函数都会有一个返回值,不管你有没有写 return 语句。
本文出自“python为什么”系列,在正式开始之前,我们就用之前讨论过的 pass语句和 …对象 作为例子,看看python的函数是怎样“无中生有”的:
可以看出,我们定义的两个函数都没有写任何的 return 语句,但是在函数调用后,都能取到一个返回值。
它们的执行效果跟直接写 return 语句相比,是完全相同的:
这 4 个例子属于两种类型:一种没有写 return,但是都有隐藏的 return 返回值;一种写了 return,而且实际也有返回值。
也就是说,后者在语义和行为上表现一致,前者虽然在语义上缺失,但是却有实际的行为和结果;后者的行为是显性的,前者却是隐性的。
《Python之禅》中有一句“显性胜于隐性(Explicit is better than implicit)”,但是,出于简洁和便利的考虑(Simple is better than complex),实际上 Python 中有很多行为都是隐性的,会把一些在语法层面的事交给解释器去完成。
上一期的 真值判断 是隐性的行为,本文前两个例子也是如此。
使用dis查看字节码,就可以看到其背后的小动作:
在这个对比图中,可以看出上述 4 个函数的解释器指令一模一样!
不管有没有写 return,它们都会执行 return 的逻辑,而且默认的返回值就是 None。
那么,问题来了:Python 的函数为什么能默认返回 None 呢?它是如何实现的呢?
答案就在解释器中,当 CPython 解释器执行到函数的最后一个代码块时,若发现没有返回值,它就会主动地加上一个 Py_None 值返回(出自:compile.c):
也就是说,如果定义的函数没有返回值,Python 解释器就会(强行地)默认给我们注入一段返回逻辑!
对于解释器的这种附赠的服务,大家是觉得很贴心,还是嫌弃它多事呢?这样的做法似乎没多少好处,但似乎也没有坏处?大家有什么疑问可以后台留言或评论哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04