
【导语】:“数据科学家”是近年来增长最快的工作之一。那么如今成为数据科学家需要哪些技能呢?本文我们就来带你了解这一问题。
CDA数据分析师 出品
编译:Mika
“数据科学家”是近年来增长最快的工作之一。这是一个令人兴奋的高薪职业,并为你提供了大量的发展机会。而且,由于合格数据科学家的供应尚未赶上巨大的业务需求,因此职位需求仍然很多。那么,在2020年成为数据科学家需要具备哪些技能?我们研究并描绘了数据科学家的画像。
我们发现在2020年数据科学家有这些特点:
1 、编程语言
下面让我们来具体看看。
首先,如果没有强大的编程技能,就无法成为数据科学家。如今,数据科学家将比以往更广泛地使用通用语言。
根据我们的年度研究:
01、Python备受青睐
毫不夸张的说 Python的受欢迎程度正在上升。
Python是数据科学家进行统计建模的首选语言。难怪全球最大的技术进步专业技术组织—IEEE会将Python视为编程语言的“大魔王”。
Python不仅是最受使用者欢迎的,实际上在雇主所需要的技能方面,它也非常接近霸主地位。
它的相关薪资是全球最高水平,雇主对Python作为首选技能的需求飞涨。数字不会说谎,在财富五百强企业的数据科学家中有70%的人使用Python。
这些年来 Python和R都越来越受欢迎。财富五百强企业的组织中也反映这一点。
此外Python是许多行业中,使用高级分析进行业务和产品开发的第一编程语言。
02、SQL越来越受欢迎
那SQL呢?
SQL的受欢迎度迅速增长,几乎赶上了第二名的R。
当今的企业每天创建五百亿字节的数据,这使SQL成为数据科学家工具箱中的重要工具。因为它对于访问、更新、插入、操作和修改大量数据至关重要,它还可以与R和Python等其他脚本语言顺利集成。
此外,Tableau和Power BI等BI工具在很大程度上依赖于它,从而增加它的使用率。因此,如果你正在寻找众多行业的绝佳职业机会,那么选择Python R和SQL是绝对不会错的。而且,如果你是渴望在数据科学家职业生涯中迈出第一步的初学者,剩下要做的就是开始学习!
2 、工作经验
另一个有趣发现是:第一年工作的数据科学家人数减少了(占比13%),比起之前(2018年和2019年占比25%)。
几年前,随着数据科学刚刚兴起,公司正在招聘具有不同背景的专业人员,并对他们进行内部培训。结果在某些情况下,聘用了相对水平基础的求职者担任高级数据科学家职位。
我们的数据表明,随着越来越多的人获得该领域的经验,第一年工作的数据科学家所占比例较小。经验在招聘中起着更大的作用,这一观念在发现中加强了 。
2020年,数据科学家专业人员的平均工作经验为8.5年。因此,在当今的就业市场中,需要在分析职位上积累必要的工作经验,然后才能准备好数据科学家的职位。也许先试试数据分析师的职位更有效。
但是数据又怎么说?我们的研究检查了数据科学家之前的职位,以及之前的一到两个头衔。
样本显示:
当我们查看即将进入当前数据科学职位时,数据马上就改变了。
3 、学历
那么学历方面呢?当前的绝大多数的数据科学家学历成以下特点:
我们可以说从业者需要以本科以上学位为目标。通常,在20位数据科学家中有19位拥有学士学位。但是,只要具备所需的技术技能和准备工作 ,本科生也可以找到相关工作。
4、专业背景
数据科学家从事的研究领域如何?哪个专业提高了求职者成为数据科学家的机会?
根据我们的研究,样本中55%的数据科学家主要来自以下三种专业:
所有这些都是技术课程,可为毕业生做好工作的定量和分析方面的准备。
——总结
因此,让我们总结描述一下。2020年典型数据科学家职业道路如下:
人们常说 “就算你不知道罗马怎么走,条条大路也通罗马”。在这儿,情况有所不同。
如果你想成为一名数据科学家,研究其他人走过的数据科学家职业道路,并从他们的经验中学习的人的职业道路,这将是十分有益的。我们希望这段视频对你有所帮助,并会指导你正确的方向,有问题可后台给我们留言哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12