京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源:DeepHub IMBA
作者: P**nHub兄弟网站
学习如何通过剪枝来使你的模型变得更小
剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。
在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。
我们的第一步导入一些工具、包:
最后,初始化TensorBoard,这样就可以将模型可视化:
import os import zipfile import tensorflow as tf import tensorflow_model_optimization as tfmot from tensorflow.keras.models import load_model from tensorflow import keras %load_ext tensorboard
在这个实验中,我们将使用scikit-learn生成一个回归数据集。之后,我们将数据集分解为训练集和测试集:
from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=10000, n_features=10, random_state=0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
我们将创建一个简单的神经网络来预测目标变量y,然后检查均值平方误差。在此之后,我们将把它与修剪过的整个模型进行比较,然后只与修剪过的Dense层进行比较。
接下来,在30个训练轮次之后,一旦模型停止改进,我们就使用回调来停止训练它。
early_stop = keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=30)
我们打印出模型概述,以便与运用剪枝技术的模型概述进行比较。
model = setup_model() model.summary()
让我们编译模型并训练它。
tf.keras.utils.plot_model( model, to_file=”model.png”, show_shapes=True, show_layer_names=True, rankdir=”TB”, expand_nested=True, dpi=96, )
现在检查一下均方误差。我们可以继续到下一节,看看当我们修剪整个模型时,这个误差是如何变化的。
from sklearn.metrics import mean_squared_error predictions = model.predict(X_test) print(‘Without Pruning MSE %.4f’ % mean_squared_error(y_test,predictions.reshape(3300,))) Without Pruning MSE 0.0201
当把模型部署到资源受限的边缘设备(如手机)时,剪枝等优化模型技术尤其重要。
我们将上面的MSE与修剪整个模型得到的MSE进行比较。第一步是定义剪枝参数。权重剪枝是基于数量级的。这意味着在训练过程中一些权重被转换为零。模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。
预期的参数是剪枝计划、块大小和块池类型。
from tensorflow_model_optimization.sparsity.keras import ConstantSparsity
pruning_params = {
'pruning_schedule': ConstantSparsity(0.5, 0),
'block_size': (1, 1),
'block_pooling_type': 'AVG'
}
现在,我们可以应用我们的剪枝参数来修剪整个模型。
from tensorflow_model_optimization.sparsity.keras import prune_low_magnitude model_to_prune = prune_low_magnitude( keras.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)), tf.keras.layers.Dense(1, activation='relu') ]), **pruning_params)
我们检查模型概述。将其与未剪枝模型的模型进行比较。从下图中我们可以看到整个模型已经被剪枝 —— 我们将很快看到剪枝一个稠密层后模型概述的区别。
model_to_prune.summary()
在TF中,我们必须先编译模型,然后才能将其用于训练集和测试集。
model_to_prune.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’])
由于我们正在使用剪枝技术,所以除了早期停止回调函数之外,我们还必须定义两个剪枝回调函数。我们定义一个记录模型的文件夹,然后创建一个带有回调函数的列表。
tfmot.sparsity.keras.UpdatePruningStep()
使用优化器步骤更新剪枝包装器。如果未能指定剪枝包装器,将会导致错误。
tfmot.sparsity.keras.PruningSummaries()
将剪枝概述添加到Tensorboard。
log_dir = ‘.models’ callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # Log sparsity and other metrics in Tensorboard. tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir), keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=10) ]
有了这些,我们现在就可以将模型与训练集相匹配了。
model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0)
在检查这个模型的均方误差时,我们注意到它比未剪枝模型的均方误差略高。
prune_predictions = model_to_prune.predict(X_test) print(‘Whole Model Pruned MSE %.4f’ % mean_squared_error(y_test,prune_predictions.reshape(3300,))) Whole Model Pruned MSE 0.1830
现在让我们实现相同的模型,但这一次,我们将只剪枝稠密层。请注意在剪枝计划中使用多项式衰退函数。
from tensorflow_model_optimization.sparsity.keras import PolynomialDecay
layer_pruning_params = {
'pruning_schedule': PolynomialDecay(initial_sparsity=0.2,
final_sparsity=0.8, begin_step=1000, end_step=2000),
'block_size': (2, 3),
'block_pooling_type': 'MAX'
}
model_layer_prunning = keras.Sequential([
prune_low_magnitude(tf.keras.layers.Dense(128, activation='relu',input_shape=(X_train.shape[1],)),
**layer_pruning_params),
tf.keras.layers.Dense(1, activation='relu')
])
从概述中我们可以看到只有第一个稠密层将被剪枝。
model_layer_prunning.summary()
然后我们编译并拟合模型。
model_layer_prunning.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’]) model_layer_prunning.fit(X_train,y_train,epochs=300,validation_split=0.1,callbacks=callbacks,verbose=0)
现在,让我们检查均方误差。
layer_prune_predictions = model_layer_prunning.predict(X_test) print(‘Layer Prunned MSE %.4f’ % mean_squared_error(y_test,layer_prune_predictions.reshape(3300,))) Layer Prunned MSE 0.1388
由于我们使用了不同的剪枝参数,所以我们无法将这里获得的MSE与之前的MSE进行比较。如果您想比较它们,那么请确保剪枝参数是相同的。在测试时,对于这个特定情况,layer_pruning_params给出的错误比pruning_params要低。比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。
现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。
def train_save_weights():
model = setup_model()
model.compile(optimizer='adam',
loss=tf.keras.losses.mean_squared_error,
metrics=['mae', 'mse'])
model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=callbacks,verbose=0)
model.save_weights('.models/friedman_model_weights.h5')
train_save_weights()
我们将建立我们的基础模型,并加载保存的权重。然后我们对整个模型进行剪枝。我们编译、拟合模型,并在Tensorboard上将结果可视化。
base_model = setup_model()
base_model.load_weights('.models/friedman_model_weights.h5') # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)
model_for_pruning.compile(
loss=tf.keras.losses.mean_squared_error,
optimizer='adam',
metrics=['mae', 'mse']
)
model_for_pruning.fit(
X_train,
y_train,
callbacks=callbacks,
epochs=300,
validation_split = 0.2,
verbose=0
)
%tensorboard --logdir={log_dir}
以下是TensorBoard的剪枝概述的快照。
在TensorBoard上也可以看到其它剪枝模型概述
现在让我们定义一个计算模型大小函数
def get_gzipped_model_size(model,mode_name,zip_name): # Returns size of gzipped model, in bytes. model.save(mode_name, include_optimizer=False) with zipfile.ZipFile(zip_name, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(mode_name) return os.path.getsize(zip_name)
现在我们定义导出模型,然后计算大小。
对于剪枝过的模型,tfmot.sparsity.keras.strip_pruning()用来恢复带有稀疏权重的原始模型。请注意剥离模型和未剥离模型在尺寸上的差异。
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning,'.models/model_for_pruning.h5','.models/model_for_pruning.zip')))
print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export,'.models/model_for_export.h5','.models/model_for_export.zip')))
Size of gzipped pruned model without stripping: 6101.00 bytes Size of gzipped pruned model with stripping: 5140.00 bytes
对这两个模型进行预测,我们发现它们具有相同的均方误差。
model_for_prunning_predictions = model_for_pruning.predict(X_test)
print('Model for Prunning Error %.4f' % mean_squared_error(y_test,model_for_prunning_predictions.reshape(3300,)))
model_for_export_predictions = model_for_export.predict(X_test)
print('Model for Export Error %.4f' % mean_squared_error(y_test,model_for_export_predictions.reshape(3300,)))
Model for Prunning Error 0.0264 Model for Export Error 0.0264
您可以继续测试不同的剪枝计划如何影响模型的大小。显然这里的观察结果不具有普遍性。也可以尝试不同的剪枝参数,并了解它们如何影响您的模型大小、预测误差/精度,这将取决于您要解决的问题。
为了进一步优化模型,您可以将其量化。如果您想了解更多,请查看下面的回购和参考资料。
作者:Derrick Mwiti
deephub翻译组:钱三一
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06