京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上一篇文章给大家分享了一些关于维度表和事实表的内容,今天给大家带来的是关于维度表技术的一些内容,希望对大家有所帮助。
一、维度表结构
1.每个维度表都包含单一的主键列。
3.维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。
二、常见维度表技术
1.维度代理键
DW/BI需要申明对所有的维度的主键的空置,无法采用自然键或者附加日期的自然键。最好是建立无语意的整型主键。
2.自然键、持久键、超自然键
自然键,例如员工编号
持久键,有时也被叫做超自然持久键。数据仓库为员工编号创建一个单一键,这个单一键保持永久性不会发生变化。
最后的持久键应该独立于原始的业务过程。
3.下钻
商业分析的基本方法:
上卷(roll-up):上卷是沿着维的层次向上聚集汇总数据。 例如,对产品销售数据,沿着时间维上卷,可以求出所有产品在所有地区每月 (或季度或年或全部)的销售额。
下探(drill-down):下探是上卷的逆操作,它是沿着维的层次向下,查看更详细的数据。
3.空值属性
推荐采用标识性标识空值,例如unknown。因为不同数据库对空值处理不同。
4.日历日期维度
用YYYYMMdd更容易划分。
5.维度子集
一些需求是不需要最细节的数据的,那么此时事实数据需要关联特定的维度,这些特定维度包含在从细节维度选择的行中,因此就叫做维度子集。
细节维度和维度子集具有相同的属性或内容,具有一致性。
(1)建立包含属性子集的子维度
例如需要上钻到子维度。
(2)建立包含行子集的子维度
在两个维度处于同一细节粒度的情况下,如果其中一个仅仅是行的子集,那么就会产生另外一种一致性维度构造子集。
在某些版本的Hive中,对ORC表使用overwrite会出错,为了保持兼用性,通常会使用truncate 。
(3)使用视图实现维度子集
这种方式存在着两个主要问题:一是新创建的子维度是物理表,因此需要额外的存储空间;二是存在数据不一致的潜在风险。
通常的解决方法是在基本维度上建立视图生成子维度。
优点:
a.可以简单实现,不需要修改原来脚本的逻辑;
b.因为视图不真正存储数据,因此不会占用存储空间;
c.将数据不一致的可能消除掉。
缺点:
a.如果基本维度和子维度表数据量相差悬殊的话,性能比物理表差很多;
b.如果定义视图查询,并且视图很多,可能对元数据存储系统造成压力,严重影响查询性能。
6.层次维度
通常我们使用grouping__id 二进制序列,rollup,collect_set,concat_ws等函数。
层次关系方法:固定深度层次进行分组和钻取查询,递归层次结构数据装载、展开与平面化,多路径层次和参差不齐处理
7.退化维度
除了业务主键外没有其他内容的维度表。
8.杂项维度
包含数据具有很少可能值的维度。有时与其为每个标志或属性定义不同的维度,不如建立单独的讲不同维度合并到一起的杂项维度。
9.维度合并
如果几个相关维度的基数都很小,或者具有多个公共属性时,可以考虑合并。
10.分段维度
包含连续的分段度量值,通常用作客户维度的行为标记时间序列,分析客户行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06