
小编今天跟大家分享的文章是关于python基于主成分分析的客户信贷评级实战的,大家在学习python过程中要注意理论学习与实际案例操作相结合,这样才能更好地掌握。好了,跟小编一起来看具体内容吧!
文章来源: 早起Python
作者:萝卜
本文是Python商业数据挖掘实战的第5篇
大样本的数据集固然提供了丰富的信息,但也在一定程度上增加了问题的复杂性。如果我们分别对每个指标进行分析,往往得到的结论是孤立的,并不能完全利用数据蕴含的信息。但是盲目的去减少我们分析的指标,又会损失很多有用的信息。所以我们需要找到一种合适的方法,一方面可以减少分析指标,另一方面尽量减少原指标信息的损失。
变量压缩的方法非常多,但百法不离其中,其实最根本的都是「主成分分析」(Primary Component Analysis,下简称PCA)。能够理解 PCA 的基本原理并将代码用于实际的业务案例是本文的目标,本文将详细介绍如何利用Python实现基于主成分分析的5c信用评级,主要分为两个部分:
在正式开始原理趣析前,我们先从两个生活场景入手,借以更好的理解需要进行变量压缩的原因。
上司希望从事数据分析岗位的你仅用两个短句就概括出以下数据集所反映出的经济现象
用几个长句都不一定能够很好的描述数据集的价值,更何况高度凝练的两个短句,短短九个指标就已经十分让人头疼了,如果表格再宽一些呢,比如有二三十个变量?
大学生讲究德智体美劳全面发展,学校打算从某学院挑选一两名学生外派进修数据分析,需要综合全面的考量学生素质。部分候选学生的个人情况如下:
首先还是与场景1类似的问题,这些指标只是冰山一角,还没算上学生们其他领域的成绩,如果说在场景1中还可以以牺牲全面性来删除一些我们觉得关系不大的变量,比如我们猜测老板只会关注GDP与人均GDP这两个指标,那么场景2的背景便已经清晰地说明了需要综合地考虑变量,不能有生硬的去掉“体育”之类的操作。
如果把信息压缩这四个字拆成信息和压缩这两部分来看的话,便会呈现如下值得探究的问题:
「信息压缩中的信息指什么?」
其实各种数据、变量都可被称为信息,而统计学家们常把方差当作信息。其实在做描述性统计分析的时候,只要能够表现我们数据的变异情况的统计量都可以被称作信息,如方差,极差等,只不过是极差会更好计算。以方差为例,方差变化越大,数据分布越分散,涵盖的信息就越多。
「什么样的信息/变量才能被压缩?」
「有哪些压缩的方法?」
PCA就是一种常见的特征提取方法,它会将关系紧密的变量们用尽可能少的新创建的变量代替,使这些新变量是两两不相关的。这就实现用较少的综合指标分别代表存在于各个变量中的各类信息。所以多元变量压缩思路的基础其实是相关分析。
「压缩后的信息与原来的有什么不同?」
我们需要明确的是,无论是主成分还是后续推文的稀疏主成分分析,都有一个问题:他们得到的主成分均没有什么业务含义,如果希望得到的压缩后的变量是有意义的,则可以考虑变量聚类。
下图为两个正态分布的变量间可能存在的三种关系的示意图,去正态分布和相关系数为 0.9 是为了从比较理想化的角度来解释变量压缩的步骤。
可以看到,若两变量间的关系是较强的正/负相关,用铅笔把散点图的范围圈起来的话呈现的都是一个较扁的椭圆;反之,完全独立的两个变量的分布更像是一个肥胖的圆形。关于压缩过程我们依旧对以下几个常见的问题进行解释。
「如何通过散点图理解信息压缩?」
直接看散点图只能判断出是否值得压缩,毕竟只有变量间具有一定的相关性才值得压缩。接下来将涉及到 PCA 中很重要的一个知识点:坐标轴旋转
「旋转坐标轴的作用?」
旋转后的坐标轴与原坐标轴一样,都是正交(垂直)的。这样的旋转方式可以使两个相关的变量的信息在坐标轴上得到最充分的体现(如果以极差作为信息,则点在 X1 的投影范围最长)。之后便可从短轴方向来压缩,当这个椭圆被压扁到一定程度时,短轴上的信息就可以忽略不计,便达到了信息压缩的目的。
「如果有三个变量该如何压缩?」
三维的也是如此,只不过是由椭圆变成椭球(三个变量都相关)。步骤还是一样,找到最长轴后,在轴上做切面,切面一旦有了,便又回归到了二维的情况。这时可以找到次长轴和最短轴,这就可以依次的提取,当我们认为最短轴可以忽略不计的时候,就又起到了信息压缩的作用。
要注意的是如果呈球形分布,这说明变量间没有相关关系,没有必要做主成分分析,也不能做变量的压缩。
前面已经说到,PCA后所得到的压缩的主成分并没有什么意义,比如5个变量压缩成2个主成分P1和P2。
这两个主成分中的组成等式为:
其中,等式右边的系数正负与否并没有什么意义,通常看绝对值即可。第一个主成分 P1中受五个变量的影响程度无明显差别,权重都在0.42 ~ 0.47间 主成分P2受第一个变量的影响最大,权重系数为0.83,受第三个变量影响最小,权重为0.14
那么如何知道应该压缩成几个主成分?PCA 的功能是压缩信息,压缩后的每个主成分都能够解释一部分信息的变异程度(统计学家喜欢用方差表示信息的变异程度),所以,只需要满足解释信息的程度达到一定的值即可。
明显可以看出随着成分数目的增加,累积变异百分比逐渐增加。不建议使得累积百分比等于1,这将会导致有些主成分带来冗余信息,通常等于 0.85 就可以了。当然我们也可以选择两个主成分,因为当我们增加第三个主成分因子时,会发现增加它对于累积变异的百分比没有太大的影响。
在正式开始 Python 代码实战前,简要了解主成分分析的运用场景是非常有必要的
❝
案例背景:某金融服务公司为了了解贷款客户的信用程度,评价客户的信用等级,采用信用评级常用的5C(品质 Character,能力 Capacity,资本 Capital,抵押 Collateral,条件 Condition)方法, 说明客户违约的可能性。
❞
本次实战将围绕综合打分,即只选出一个主成分的情况来实现客户信用评级。
首先导入相关包并进行探索性分析
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') plt.rc('font', **{'family': 'Microsoft YaHei, SimHei'}) # 设置中文字体的支持 df = pd.read_csv('loan_apply.csv') df
参数解释:
进行主成分分析前,一定要对数据进行相关分析,因为相关性较低或独立的变量不可做PCA
# 求解相关系数矩阵,证明做主成分分析的必要性 ## 丢弃无用的 ID 列 data = df.drop(columns='ID') import seaborn as sns sns.heatmap(data.corr(), annot=True) # annot=True: 显示相关系数矩阵的具体数值
发现变量间相关性都比较高,大于0.7,有做PCA的必要
PCA 建模前,数据需要进行标准化,通常使用中心标准化,也就是将变量都转化成Z分数的形式,即偏离平均数的标准差个数,这样才能防止量纲问题给建模带来的影响。如身高-体重的量纲1.78-59与178-60在散点图上的显示会有比较大的区别!
# PCA 通常用中心标准化,也就是都转化成 Z 分数的形式 from sklearn.preprocessing import scale data = scale(data)
使用sklearn进行PCA分析,注意:
from sklearn.decomposition import PCA pca = PCA(n_components=5) # 直接与变量个数相同的主成分 pca.fit(data)
明显看出第一个主成分就已经能够解释84%的信息变异程度了!
重新选择主成分个数进行建模
第一个主成分(解释了84% 的变异的那个)与5个自变量的系数关系可以理解成:「第一主成分 = 0.413 * 品格 + 0.47 * 能力 + 0.46 * 资本 + 0.45 * 担保 + 0.42 * 环境」。所以说生成的主成分除降维意义显著外,并没有什么其他的意义,并不好解释。
这里的new_data是上文代码pca.fit_transform(data)生成的降维后的数据,接着按照综合打分从高到低进行排序
根据结果我们可以发现贷款给7号客户风险最低,给9号客户风险最高!
本文通过生活实例引出为什么要进行信息的压缩与提炼,讲解了主成分分析 PCA 的原理与使用时的注意事项,并使用Python示范了完整的建模流程,给读者提供了参考和借鉴。另外,作为数据分析师必会的PCA在图像处理如人脸识别和手写数字识别等机器学习领域也有很广的运用,值得好好琢磨并熟练掌握。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27