
提到漏斗模型,大家肯定都不陌生,像漏斗一样的模型嘛。我们在商业分析过程中,肯定会遇到各种个样的模型,其中AARRR漏斗模型就是最常见的模型之一。接下来,就跟小编一起来了解一下AARRR漏斗模型的具体内容吧。
AARRR是增长黑客的经典模型,也可以称为用户增长模型,或者海盗法则,本质上是一个流量漏斗模型。AARRR即Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播),分别对应的是产品用户生命周期中的5个重要环节,每个环节的转化都会带来用户流失,但相应的用户价值也会提高。AARRR模型的提出者认为;所有创新型、成长型的企业都应该按照这个模型来做增长。
下面具体来解释以下AARRR5个重要环节:
1.Acquisition获取用户
获取用户一般需要评估的维度有:渠道的获客数量、获客质量等。渠道数量和质量的指标包括:每日新增、累积新增、启动次数、首次交易户、首绑交易户、一次性用户数、平均使用时长等。具体的获取用户的方式,线上方面主要是:网站SEO,SEM,app市场首发、ASO等方式,另外还包括运营活动的H5页面,以及自媒体推广等方式。线下方面主要通过地推形式以及传单形式进行获取。
2.Activation提高活跃度
获取用户之后,利用价格优惠、内容编辑等方法来提高用户的活跃度,让用户使用产品的核心功能,体验到产品的价值。内容多,商品好,价格优惠,但也必须要注意成本。
通过活跃度指标数据,我们可以更清晰的了解到用户的体验,有利于提高用户粘性。
3.Retention提高留存率
留存率指标一般包括:次日、3日、7日、30日留存。通常来说,次日留存>3日留存>7日留存>次月留存。用户的留存量刚开始会下降的比较严重,到了后期会逐渐稳定在一个数量级上。稳定下来的这些用户,基本上就是产品的目标用户了。通过日留存率、周留存率、月留存率等指标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。运营上,采用内容,相互留言等社区用户共建UCG,摆脱初期的PCG模式。电商通过商品质量,O2O通过优质服务提高留存。这些都是业务层面的提高留存。产品模式上,通过会员机制的签到和奖励的机制去提高留存。包括app推送和短信激活方式都是激活用户,提高留存的产品方式。
4.Revenue获取收入
获取收入是应用运营最核心的一块。收入来源主要包括三种:付费应用、应用内付费、以及广告。在国内目前付费应用的接受程度很低,包括Google Play Store在中国也只推免费应用。开发者的收入来源主要是广告,而应用内付费目前在游戏行业应用比较多。
无论是哪种付费方式,收入都直接或间接来自用户。这也就意味着,我们前面的提高活跃度、提高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。
5.Refer自传播
以之前的运营模型来说,通常到第四个层次:获取收入就结束了。但是随着社交网络的兴起,运营又增加了一个层次,这就是基于社交网络的病毒式传播,目前已经成为获取用户的一个新途径。而且这种方式的成本很低,效果好,但前提是产品自身要有足够好的质量和口碑。
从自传播到再次获取新用户,应用运营形成了一个螺旋式上升的轨道。一般优秀的应用会很好地地利用了这个轨道,以此不断扩大自己的用户群体。
以上就是小编今天跟大家分享的关于AARRR漏斗模型的一些基本理论,大家需要结合自己业务中的实际去灵活运用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14