
移动互联网和社区O2O是今年资本竞相追逐的两大领域,不少细分领域的明星公司动辄获得数千万元融资,例如丁香客、荣昌e袋、河狸家等。但创业公司在采集了大量用户行为数据后,如何进行有效的数据分析和应用成为众多创投人士关心的话题。在他们看来,大数据应用找到合适的变现模式,或成为引爆业内新一轮大发展的关键点,蕴藏大量投资机会。
青睐数据深度挖掘项目
“数据收集其实不难,难的是在行业方向的深度垂直挖掘和应用。”海银资本合伙人李东平说。他认为大数据应用最基本的问题是数据源的界定和获取,但这个问题目前行业已经解决得很好,各种入口不断被获取。面对海量信息,数据的深度垂直挖掘和应用至关重要,开发者对待数据的使用者需具备服务者的心态,这样才能发现并解决最核心的需求。
他以给中国移动做咨询的经历为例,移动网关能够捕捉用户开关机的数据,假设一个人北京关机、在成都开机,中间间隔三个小时,便意味着坐飞机到成都出差,如果数据处理的第三方能把这些数据统计出来,分析此人在未来是否为高频率旅行客户,再积累大规模类似的信息,做成一个服务包,这就对航空公司和票务公司具有很大价值。而作为服务商,可以将从前者拿到的优惠折扣提供给客户,来回就会产生双重的增值效应。
他说,大数据应用不能单纯依靠技术,还要借助在传统领域有所积累的行家。“比如,我收集微博上的言论,只能很简单地通过计算褒义词、贬义词的频率去判断一个人的态度或观点,但语言学家会用更多的分析方法判断一个人的特征。”他认为,技术不能代替一切,行业发展到深度挖掘和应用的层次,应该结合一些传统要素。
东信网络首席战略官郭利锋表示,他们会利用大数据对消费者先进行大概分类,然后再进行目标投放。随着大数据的沉淀和完善、计算机对人进行分析和匹配。未来的营销会从群体营销进入个体经销阶段,不是针对一群人,而是针对每一个人,围绕生活每个时点、围绕社交关系层,对每个人制定不同的营销策略,传递不同的表现内容,并且去引导其进行购买。他将此称之为“程序化营销过程”。
最关心大数据变现问题
当完成了数据采集、存储、处理、分析等一系列工作后,如何变现成了大数据应用最根本的问题,也是创投人士关心的话题。
李东平认为,数据要能赚钱关键在于发挥其预测的功能,而非仅仅统计。例如想设立一个投资电影的基金,需要判断电影是否值得投资,就会把导演、演员、电影类型、合作院线层级和数量、相应过往评论等数据全部搜集起来,放到构建的模型中去测量,百度就在做类似的工作,他认为很有前瞻性。
华创资本董事总经理曹映雪认为,数据变现的根本问题在于应用场景的开发和完善,目前还没有固定模式,但在金融领域已有较多尝试。比如,一些P2P平台会提到即时信贷:贷款人即时申请,平台10分钟就可以放贷。其中,是否放贷的决定以及放贷额度依靠的就是后台的金融大数据平台。这个大数据平台不仅会挖掘贷款人传统的银行数据,还通过申请者线上交易的支付宝、信用卡账单等第三方信息迅速集成,进而通过自身建立的模型给贷款者进行信用打分。“实现上述流程要求具有信息的快速处理能力。”他说。
除金融大数据,华创还接触过部分做视频大数据的团队,“视频大数据在大数据的云存储领域应该占到整个市场份额的50%以上。包括后续数据计算方面的一些商业场景的应用,值得关注和探讨。”他说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02