
今天小编给大家分享的文章是:为什么我们的神经网络需要激活函数。神经网络是机器学习里极为重要的一门技术。学习神经网络不仅能让让我们掌握一门强大的机器学习方法,还有利于我们理解深度学习技术。希望通过这篇文章能让大家对神经网络有一个更深刻的理解,对大家的机器学习有所帮助。
文章来源: DeepHub IMBA微信公众号
作者:P**nHub兄弟网站
如果你正在读这篇文章,那么很可能你已经知道什么是神经网络,什么是激活函数,但是,一些关于机器学习的入门课程并不能很清楚地说明,为什么我们需要这些激活函数。我们需要它们吗?没有它们,神经网络还能工作吗?
首先让我们回顾一下关于神经网络的一些事情。它们通常被可视化地表示为一个类似图表的结构,如下图所示:
如上图所示,神经网络有3层:输入层、隐藏层、输出层,共3、4、2个神经元。输入层的节点数量与数据集的特性数量相同。对于隐藏层,您可以自由选择需要多少节点,并且可以使用多个隐藏层。
网络中的每个神经元,除了那些在输入层的神经元,可以被认为是一个线性分类器,它将前一层神经元的所有输出作为输入,并计算这些输出加上一个偏置项的加权和。然后,下一层的神经元将前一层线性分类器计算的值作为输入,然后计算这些值的加权和,依此类推。我们希望,通过以这种方式结合线性分类器,我们可以构建更复杂的分类器,可以代表我们的数据中的非线性模式。
让我们看看下面的例子数据集:
这个数据集不是线性可分的,我们不能将一个类从另一个通过一条线分开。但我们可以通过使用两条线作为决策边界来实现这种分离。
所以,我们可能认为两个中间神经元可以完成这个工作。这两个神经元将学习上图中的两条分离线。然后我们需要一个输出神经元它将之前的两个神经元作为输入,这样它就能正确地进行分类。
对于最后一个做正确分类的神经元,它需要n1和n2隐藏神经元的输出是线性可分的,如果我们把它们画在一个二维平面上。上面画的两条线有方程:
这意味着这两个隐藏的神经元正在计算输入x1和x2的如下线性组合:
我们画出n1和n2看看它们是否有用。
我们对我们的小神经网络感到失望。n1和n2的输出仍然不是线性可分的,因此输出神经元不能正确分类。那么,问题是什么呢?
问题是,任何线性函数的线性组合仍然是线性的,在一张纸上证明它是正确的并不难。这一事实的证据在本文的结尾。所以,不管我们用了多少层或多少神经元,按照我们目前的方式,我们的神经网络仍然只是一个线性分类器。
我们需要更多的东西。我们需要将每个神经元计算出的加权和传递给一个非线性函数,然后将这个函数的输出看作那个神经元的输出。这些函数称为激活函数,它们在允许神经网络学习数据中的复杂模式时非常重要。
[1] 已经证明,具有2层(输入层除外)和非线性激活函数的神经网络,只要在这些层中有足够多的神经元,就可以近似任何函数。那么,如果只有两层就够了,为什么人们现在还在使用更深层次的网络呢?嗯,仅仅因为这两层网络“能够”学习任何东西,这并不意味着它们很容易优化。在实践中,如果我们的网络产能过剩,他们就会给我们提供足够好的解决方案,即使他们没有尽可能地优化。
还有更多种类的激活函数,我们想在上面的示例中使用其中的两种。它们分别是ReLU(直线单元)和tanh(双曲正切),如下图所示。
如果我们在示例中使用ReLU激活,将会发生什么?下图是应用ReLU激活后n1和n2神经元的输出。
现在,我们的这两类点可以用直线分开,这样输出神经元就可以正确地对它们进行分类。
如果我们使用tanh激活,也会发生类似的事情,但这次我们的点之间的差距更大。
同样,输出神经元可以正确地分类这些点。
这里有一个简单的数学证明,证明任何线性函数的线性组合仍然是线性的:
其中a0, a1,…,an是不依赖于输入x1,…,xn的常数。
我希望这篇文章对你有用,谢谢阅读!
参考
[1] Cybenko, G.V. (2006). “Approximation by Superpositions of a Sigmoidal function”. In van Schuppen, Jan H. (ed.). Mathematics of Control, Signals, and Systems. Springer International. pp. 303–314.
作者:Dorian Lazar
deephub翻译组
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16