
今天小编给大家分享的文章是:为什么我们的神经网络需要激活函数。神经网络是机器学习里极为重要的一门技术。学习神经网络不仅能让让我们掌握一门强大的机器学习方法,还有利于我们理解深度学习技术。希望通过这篇文章能让大家对神经网络有一个更深刻的理解,对大家的机器学习有所帮助。
文章来源: DeepHub IMBA微信公众号
作者:P**nHub兄弟网站
如果你正在读这篇文章,那么很可能你已经知道什么是神经网络,什么是激活函数,但是,一些关于机器学习的入门课程并不能很清楚地说明,为什么我们需要这些激活函数。我们需要它们吗?没有它们,神经网络还能工作吗?
首先让我们回顾一下关于神经网络的一些事情。它们通常被可视化地表示为一个类似图表的结构,如下图所示:
如上图所示,神经网络有3层:输入层、隐藏层、输出层,共3、4、2个神经元。输入层的节点数量与数据集的特性数量相同。对于隐藏层,您可以自由选择需要多少节点,并且可以使用多个隐藏层。
网络中的每个神经元,除了那些在输入层的神经元,可以被认为是一个线性分类器,它将前一层神经元的所有输出作为输入,并计算这些输出加上一个偏置项的加权和。然后,下一层的神经元将前一层线性分类器计算的值作为输入,然后计算这些值的加权和,依此类推。我们希望,通过以这种方式结合线性分类器,我们可以构建更复杂的分类器,可以代表我们的数据中的非线性模式。
让我们看看下面的例子数据集:
这个数据集不是线性可分的,我们不能将一个类从另一个通过一条线分开。但我们可以通过使用两条线作为决策边界来实现这种分离。
所以,我们可能认为两个中间神经元可以完成这个工作。这两个神经元将学习上图中的两条分离线。然后我们需要一个输出神经元它将之前的两个神经元作为输入,这样它就能正确地进行分类。
对于最后一个做正确分类的神经元,它需要n1和n2隐藏神经元的输出是线性可分的,如果我们把它们画在一个二维平面上。上面画的两条线有方程:
这意味着这两个隐藏的神经元正在计算输入x1和x2的如下线性组合:
我们画出n1和n2看看它们是否有用。
我们对我们的小神经网络感到失望。n1和n2的输出仍然不是线性可分的,因此输出神经元不能正确分类。那么,问题是什么呢?
问题是,任何线性函数的线性组合仍然是线性的,在一张纸上证明它是正确的并不难。这一事实的证据在本文的结尾。所以,不管我们用了多少层或多少神经元,按照我们目前的方式,我们的神经网络仍然只是一个线性分类器。
我们需要更多的东西。我们需要将每个神经元计算出的加权和传递给一个非线性函数,然后将这个函数的输出看作那个神经元的输出。这些函数称为激活函数,它们在允许神经网络学习数据中的复杂模式时非常重要。
[1] 已经证明,具有2层(输入层除外)和非线性激活函数的神经网络,只要在这些层中有足够多的神经元,就可以近似任何函数。那么,如果只有两层就够了,为什么人们现在还在使用更深层次的网络呢?嗯,仅仅因为这两层网络“能够”学习任何东西,这并不意味着它们很容易优化。在实践中,如果我们的网络产能过剩,他们就会给我们提供足够好的解决方案,即使他们没有尽可能地优化。
还有更多种类的激活函数,我们想在上面的示例中使用其中的两种。它们分别是ReLU(直线单元)和tanh(双曲正切),如下图所示。
如果我们在示例中使用ReLU激活,将会发生什么?下图是应用ReLU激活后n1和n2神经元的输出。
现在,我们的这两类点可以用直线分开,这样输出神经元就可以正确地对它们进行分类。
如果我们使用tanh激活,也会发生类似的事情,但这次我们的点之间的差距更大。
同样,输出神经元可以正确地分类这些点。
这里有一个简单的数学证明,证明任何线性函数的线性组合仍然是线性的:
其中a0, a1,…,an是不依赖于输入x1,…,xn的常数。
我希望这篇文章对你有用,谢谢阅读!
参考
[1] Cybenko, G.V. (2006). “Approximation by Superpositions of a Sigmoidal function”. In van Schuppen, Jan H. (ed.). Mathematics of Control, Signals, and Systems. Springer International. pp. 303–314.
作者:Dorian Lazar
deephub翻译组
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28