
前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。
一、交叉熵损失函数概念
交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为:
接下来了解一下交叉熵:交叉熵Cross Entropy,是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。
交叉熵的计算方式如下:
交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。
二、交叉熵损失函原理
一般我们学习交叉熵损失函数是在二元分类情况下,就比如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,其真实样本的标签为 [0.1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。
其中s是模型上一层的输出,sigmoid函数有这样的特点:s = 0 时,g(s) = 0.5; s >> 0 时,g ≈ 1.s << 0 时,g ≈ 0.显然,g(s) 将前一级的线性输出映射到[0. 1]之间的数值概率上,这里g(s)就是交叉熵公式中的模型预测输出。
预测输出也就是, Sigmoid 函数的输出,表示当前样本标签为 1 的概率:
y^=P(y=1|x)
那么,当前样本标签为 0 的概率就可以表示为:
1−y^=P(y=0|x)
从极大似然性的角度考虑,将上面两种情况进行整合:
也就是:
当真实样本标签 y = 0 时,上面式子第一项就为 1.概率等式转化为:
P(y=0|x)=1−y^
当真实样本标签 y = 1 时,上面式子第二项就为 1.概率等式转化为:
P(y=1|x)=y^
这两种情况下的概率表达式跟原来的完全相同,只是将两种情况进行了整合。
接下来我们重点看一下整合之后的概率表达式,概率 P(y|x) 越大越好。因为 log 运算并不会影响函数本身的单调性,所以 将log 函数引入P(y|x)。于是就有:
log P(y|x)=log(y^y⋅(1−y^)1−y)=ylog y^+(1−y)log(1−y^)
log P(y|x) 越大越好,反过来说也就是,只需要 log P(y|x) 的负值 -log P(y|x) 越小就可以了。引入损失函数,而且使得 Loss = -log P(y|x)即可。那么就能得到损失函数为:
如果是计算N个样本的总损失函数的情况,则只需要将N个Loss叠加起来
三、交叉熵损失函数的优缺点分析
1.使用逻辑函数得到概率,并结合交叉熵当损失函数时,当模型效果差的时,学习速度较快,模型效果好时,学习速度会变慢。
2.采用了类间竞争机制,比较擅长于学习类间的信息,但是只关心对于正确标签预测概率的准确性,而忽略了其他非正确标签的差异,从而导致学习到的特征比较散。
以上就是小编今天跟大家分享的关于交叉熵损失函数概念和原理的相关介绍,希望对于大家有所帮助。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18