京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。
一、交叉熵损失函数概念
交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为:
接下来了解一下交叉熵:交叉熵Cross Entropy,是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。
交叉熵的计算方式如下:
交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。
二、交叉熵损失函原理
一般我们学习交叉熵损失函数是在二元分类情况下,就比如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,其真实样本的标签为 [0.1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。
其中s是模型上一层的输出,sigmoid函数有这样的特点:s = 0 时,g(s) = 0.5; s >> 0 时,g ≈ 1.s << 0 时,g ≈ 0.显然,g(s) 将前一级的线性输出映射到[0. 1]之间的数值概率上,这里g(s)就是交叉熵公式中的模型预测输出。
预测输出也就是, Sigmoid 函数的输出,表示当前样本标签为 1 的概率:
y^=P(y=1|x)
那么,当前样本标签为 0 的概率就可以表示为:
1−y^=P(y=0|x)
从极大似然性的角度考虑,将上面两种情况进行整合:
也就是:
当真实样本标签 y = 0 时,上面式子第一项就为 1.概率等式转化为:
P(y=0|x)=1−y^
当真实样本标签 y = 1 时,上面式子第二项就为 1.概率等式转化为:
P(y=1|x)=y^
这两种情况下的概率表达式跟原来的完全相同,只是将两种情况进行了整合。
接下来我们重点看一下整合之后的概率表达式,概率 P(y|x) 越大越好。因为 log 运算并不会影响函数本身的单调性,所以 将log 函数引入P(y|x)。于是就有:
log P(y|x)=log(y^y⋅(1−y^)1−y)=ylog y^+(1−y)log(1−y^)
log P(y|x) 越大越好,反过来说也就是,只需要 log P(y|x) 的负值 -log P(y|x) 越小就可以了。引入损失函数,而且使得 Loss = -log P(y|x)即可。那么就能得到损失函数为:
如果是计算N个样本的总损失函数的情况,则只需要将N个Loss叠加起来
三、交叉熵损失函数的优缺点分析
1.使用逻辑函数得到概率,并结合交叉熵当损失函数时,当模型效果差的时,学习速度较快,模型效果好时,学习速度会变慢。
2.采用了类间竞争机制,比较擅长于学习类间的信息,但是只关心对于正确标签预测概率的准确性,而忽略了其他非正确标签的差异,从而导致学习到的特征比较散。
以上就是小编今天跟大家分享的关于交叉熵损失函数概念和原理的相关介绍,希望对于大家有所帮助。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01