京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。
一、交叉熵损失函数概念
交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为:
接下来了解一下交叉熵:交叉熵Cross Entropy,是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。
交叉熵的计算方式如下:
交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。
二、交叉熵损失函原理
一般我们学习交叉熵损失函数是在二元分类情况下,就比如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,其真实样本的标签为 [0.1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。
其中s是模型上一层的输出,sigmoid函数有这样的特点:s = 0 时,g(s) = 0.5; s >> 0 时,g ≈ 1.s << 0 时,g ≈ 0.显然,g(s) 将前一级的线性输出映射到[0. 1]之间的数值概率上,这里g(s)就是交叉熵公式中的模型预测输出。
预测输出也就是, Sigmoid 函数的输出,表示当前样本标签为 1 的概率:
y^=P(y=1|x)
那么,当前样本标签为 0 的概率就可以表示为:
1−y^=P(y=0|x)
从极大似然性的角度考虑,将上面两种情况进行整合:
也就是:
当真实样本标签 y = 0 时,上面式子第一项就为 1.概率等式转化为:
P(y=0|x)=1−y^
当真实样本标签 y = 1 时,上面式子第二项就为 1.概率等式转化为:
P(y=1|x)=y^
这两种情况下的概率表达式跟原来的完全相同,只是将两种情况进行了整合。
接下来我们重点看一下整合之后的概率表达式,概率 P(y|x) 越大越好。因为 log 运算并不会影响函数本身的单调性,所以 将log 函数引入P(y|x)。于是就有:
log P(y|x)=log(y^y⋅(1−y^)1−y)=ylog y^+(1−y)log(1−y^)
log P(y|x) 越大越好,反过来说也就是,只需要 log P(y|x) 的负值 -log P(y|x) 越小就可以了。引入损失函数,而且使得 Loss = -log P(y|x)即可。那么就能得到损失函数为:
如果是计算N个样本的总损失函数的情况,则只需要将N个Loss叠加起来
三、交叉熵损失函数的优缺点分析
1.使用逻辑函数得到概率,并结合交叉熵当损失函数时,当模型效果差的时,学习速度较快,模型效果好时,学习速度会变慢。
2.采用了类间竞争机制,比较擅长于学习类间的信息,但是只关心对于正确标签预测概率的准确性,而忽略了其他非正确标签的差异,从而导致学习到的特征比较散。
以上就是小编今天跟大家分享的关于交叉熵损失函数概念和原理的相关介绍,希望对于大家有所帮助。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16