
直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream> #include "cv.h" #include "highgui.h" #include "cxcore.h" using namespace std; IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图 float histMax = 0; cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值 IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1); cvZero(imgHist); //// 清空随机值 for(int i = 0; i < 255; i++) { float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值 float nextValue = cvQueryHistValue_1D(hist, i+1); int numPt = 5; CvPoint pt[5]; pt[0] = cvPoint(i*scaleX, 64*scaleY); pt[1] = cvPoint((i+1)*scaleX, 64*scaleY); pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY); pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY); pt[4] = cvPoint(i*scaleX, 64*scaleY); cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255)); } return imgHist; } int main() { IplImage *img = cvLoadImage("F:\\tongtong.jpg",1); if(!img){ cout << "No data img" << endl; } int dims = 1; int sizes = 256; float range[] = {0,255}; float*ranges[]={range}; CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1); cvClearHist(hist); //清除直方图里面的随机值 IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1); cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解 cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图 IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来 cvClearHist(hist); cvCalcHist(&imgGreen, hist, 0, 0); IplImage *histGreen = DrawHistogram(hist); cvClearHist(hist); cvCalcHist(&imgRed, hist, 0, 0); IplImage *histRed = DrawHistogram(hist); cvClearHist(hist); cvNamedWindow("show",0); cvNamedWindow("B", 0); cvNamedWindow("G", 0); cvNamedWindow("R", 0); cvShowImage("show",img); cvShowImage("B",histBlue); cvShowImage("G",histGreen); cvShowImage("R", histRed); cvWaitKey(0); cvReleaseImage(&img); cvDestroyWindow("show"); cvReleaseImage(&histBlue); cvDestroyWindow("B"); cvReleaseImage(&histGreen); cvDestroyWindow("G"); cvReleaseImage(&histRed); cvDestroyWindow("R"); return 0; }</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21