
大数据处理时我们经常会遇到数据倾斜的问题,尤其是在数据量过大时,数据倾斜可能会导致各种各样的问题。Hadoop数据倾斜主要表现为:ruduce阶段卡在99.99%,而且是一直99.99%不能结束。
具体来说就是:mapreduce程序执行时,reduce节点大部分已经执行完毕,但是其中会有一个或者几个reduce节点运行速度很慢,从而使得整个程序的处理时间很长。原因是:某一个key的条数比其他key多出太多,因此这条key所在的reduce节点所处理的数据量就比其他节点就大很多,这也就造成了某几个节点迟迟运行不完。由于Hive是分阶段执行的,map处理数据量的差异,取决于上一个stage的reduce输出,因此将数据均匀的分配到各个reduce中,这一点是解决数据倾斜的关键。
1.Hadoop框架的特性
B、Jobs 数多的作业运行效率会相对比较低
C、countdistinct、group by、join等操作,触发了Shuffle动作,导致全部相同key的值聚集在一个或几个节点上,很容易发生单点问题。
2.具体原因
A:key 分布不均匀,某一个key的条数比其他key多太多
B:业务数据自带的特性
C:建表时考虑不全面
D:可能某些 HQL 语句自身就存在数据倾斜 问题
1、从业务和数据方面解决数据倾斜
(1)有损的方法:找到异常数据。
(2)无损的方法:
对分布不均匀的数据,进行单独计算
首先对key做一层hash,把数据打散,让它的并行度变大,之后进行汇集
(3)数据预处理
2、Hadoop平台的解决方法
(1)针对join产生的数据倾斜
A.大表和小表join产生的数据倾斜
a.在多表关联情况下,将小表(关联键记录少的表)依次放到前面,这样能够触发reduce端减少操作次数,从而减少运行时间。
b.同时使用Map Join让小表缓存到内存。在map端完成join过程,这样就能省掉redcue端的工作。需要注意:这一功能使用时,需要开启map-side join的设置属性:set hive.auto.convert.join=true(默认是false)
还可以对使用这个优化的小表的大小进行设置:set hive.mapjoin.smalltable.filesize=25000000(默认值25M)
B.大表和大表的join产生的数据倾斜
a.j将异常值赋一个随机值,以此来分散key,均匀分配给多个reduce去执行
b.如果key值都是有效值的情况下,需要设置以下几个参数来解决
set hive.exec.reducers.bytes.per.reducer = 1000000000
也就是每个节点的reduce,其 默认是处理数据地大小为1G,如果join 操作也产生了数据倾斜,那么就在hive 中设定
set hive.optimize.skewjoin = true;
set hive.skewjoin.key = skew_key_threshold (default = 100000)
(2)group by 造成的数据倾斜
解决方式相对简单:
hive.map.aggr=true (默认true) 这个配置项代表是否在map端进行聚合,相当于Combiner
hive.groupby.skewindata
(3)count(distinct)或者其他参数不当造成的数据倾斜
A.reduce个数太少
set mapred.reduce.tasks=800
B.HiveQL中包含count(distinct)时
使用sum...group byl来替代。例如select a,sum(1) from (select a, b from t group by a,b) group by a;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04