
我们都知道pandas 是一款功能强大的python库,基于Numpy,支持高性能的矩阵运算,通常在数据挖掘和数据分析领域应用较多,但是pandas 数据清洗功能也不能忽视,今天小编就为大家分享pandas是如何检测和处理缺失数据的。
一、缺失值是什么?
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。通常按照数据缺失机制,可分为以下几种:
1.可忽略的缺失
(1)完全随机缺失 MCAR全称:missing completely at random,顾名思义,指的是数据的缺失是随机的,与已观察到的和未观察到的数据无关
(2)随机缺失MAR,全称:missing at random,该类数据的缺失依赖于其他完全变量
2.不可忽略的缺失NIM(全称:non-ignorable missing ) 或者非随机缺失,这种数据的缺失既依赖于完全变量又依赖于不完全变量本身
二、判断是否有缺失值
1.创建数据
import pandas as pd
import numpy as np
data = pd.DataFrame({'a': [1. 2. 4. np.nan,7. 9], 'b': ['a', 'b', np.nan, np.nan, 'd', 'e'], 'c': [np.nan, 0. 4. np.nan, np.nan, 5], 'd': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]})
a b c d
0 1.0 a NaN NaN
1 2.0 b 0.0 NaN
2 4.0 NaN 4.0 NaN
3 NaN NaN NaN NaN
4 7.0 d NaN NaN
5 9.0 e 5.0 NaN
2.判断是否有缺失值及统计
print(data.isnull().any())
a True
b True
c True
d True
print(data.isnull().sum()) #t统计每一列的缺失值个数
a 1
b 2
c 3
d 6
1.删除;
pandas缺失值处理最原始的方法,pandas删除缺失值,通常通过dropna的方法,使用dropna的前提是,缺失值的类型必须是np.nan
删除缺失值为np.nan的所在行
movie.dropna()
参数说明:
axis 参数用于控制行或列,跟其他不一样的是,axis=0 (默认)表示操作行,axis=1 表示操作列。
how 参数可选的值为 any(默认) 或者 all。any 表示一行/列有任意元素为空时即丢弃,all 一行/列所有值都为空时才丢弃。
subset 参数表示删除时只考虑的索引或列名。
thresh参数的类型为整数,它的作用是,比如 thresh=3.会在一行/列中至少有 3 个非空值时将其保留。
2.填充。
最常见的是使用 fillna 完成填充。
data.fillna(0)
除了可以使用标量来填充之外,还可以使用前一个或后一个有效值来填充。
设置参数 method=‘pad’ 或 method=‘ffill’ 可以使用前一个有效值来填充。
设置参数 method=‘bfill’ 或 method=‘backfill’ 可以使用后一个有效值来填充。
3.替换。
有时候,某些异常值也会被当做缺失值来处理,可以使用 replace 方法来替换缺失值。
比如: user_info.replace({“age”: 40. “birth”: pd.Timestamp(“1978-08-08”)}, np.nan) #将年龄40替换 日期为1978-08-08也替换
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28