京公网安备 11010802034615号
经营许可证编号:京B2-20210330
HDFS 全称为Hadoop Distributed File System,是 hadoop 分布式文件系统,具体来说,是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。最主要的作用是作为 Hadoop 生态中各系统的存储服务。HDFS是Hadoop项目的核心子项目,为分布式计算中,数据存储管理的基础,HDFS是基于流数据模式访问和处理超大文件的需求被开发出来的,能够在廉价的商用服务器上运行。HDFS 具有高容错性、高可靠性、高可扩展性、高获得性、高吞吐率等特征,这些特征使得HDFS为海量数据提供了不怕故障的存储,从而为超大数据集(Large Data Set)的应用处理带来了很多便利。
高度容错性:HDFS 最核心的架构目标是,错误检测和快速、自动的恢复 。数据会自动保存多个副本。它通过增加副本的形式,而且就算某一副本丢失,HDFS也能自动恢复。
支持大规模数据集: HDFS 应用具有很大的数据集,可以支持整体上高的数据传输带宽,并且能够支撑数以千万集的文件。
支持流式读取数据: 一次写入,多次读取。而且文件一旦写入,就不能进行修改,只能追加。这样很好的保证了数据的一致性。
高吞吐量:吞吐量是指单位时间内完成的工作量。HDFS通过并行处理数据,从而大大减少了处理时间,实现了高吞吐量。
移动计算而非移动数据:一个应用的请求,如果离它操作的数据越近就会越高效,HDFS会把数据位置暴露给计算框架, 提供了将它们自己移动到数据附近的接口。
异构软硬件平台间的可移植性:平台的可移植性,方便用户也方便 HDFS 作为大规模数据应用平台的推广。
二、HDFS 常用命令参数
| -help | 输出这个命令参数手册 |
| -ls | 显示目录信息 |
| -mkdir | 在hdfs上创建目录 |
| -moveFromLocal | 从本地剪切粘贴到hdfs |
| -moveToLocal | 从hdfs剪切粘贴到本地 |
| --appendToFile | 追加一个文件到已经存在的文件末尾 |
| -cat | 显示文件内容 |
| -tail | 显示一个文件的末尾 |
| -text | 以字符形式打印一个文件的内容 |
| -chgrp、-chmod、-chown | 同linux文件系统中的用法,对文件所属权限 |
| -copyFromLocal | 从本地文件系统中拷贝文件到hdfs路径去 |
| -copyToLocal | 从hdfs拷贝到本地 |
| -cp | 从hdfs的一个路径拷贝hdfs的另一个路径 |
| -mv | 在hdfs目录中移动文件 |
| -get | 等同于copyToLocal,就是从hdfs下载文件到本地 |
| -getmerge | 合并下载多个文件 |
| -put | 等同于copyFromLocal |
| -rm | 删除文件或文件夹 |
| -rmdir | 删除空目录 |
| -df | 统计文件系统的可用空间信息 |
| -du | 统计文件夹的大小信息 |
| -count | 统计一个指定目录下的文件节点数量 |
| -setrep | 设置hdfs中文件的副本数量 |
三、HDFS工作机制
1. HDFS集群包括两大角色:NameNode、DataNode
2. NameNode负责管理整个文件系统的元数据
3. DataNode 负责管理用户的文件数据块
4. 文件会按照固定的大小(blocksize)切分成若干块后,分布式存储于若干台datanode上
5. 每一个文件块能够有多个副本,并存放在不同的datanode上
6. Datanode定期会向Namenode汇报自身保存的文件block信息,而namenode就会负责保持文件的副本数量
7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是以通过向namenode申请进行的
HDFS文件写入时:首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
HDFS文件读取:将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16