京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背景下的电视革命_数据分析师
从2013年开始,“大数据”一词越来越热。大数据是继云计算、物联网之后IT产业又一次颠覆性的技术变革,被亚马逊前任首席科学家Andreas Weigend称作是“新的石油”。大数据将对包括电视在内的大视频行业将带来深刻的变革,包括行业生态、内容生产方式、内容的价值评判标准和商业模式等。
小李是国内某上星卫视的部门主管,他的工作就是带领他的团队对频道即将播放的电视剧和综艺节目进行全方位的营销推广。频道的全国排名每天要通过短信的方式发送到相关领导的手机中。郁闷的是,尽管他的团队每天都在加班加点地努力工作,但排名似乎与此无关,但排名落后的板子总是要打到他们身上。
小李面临的困境在国内卫视比较普遍。在原广电总局“两限令”所限定的卫视节目格局中,对电视剧的选择能力和综艺节目的创新力直接决定了一家卫视的收视排名。但在大多数卫视的节目采购阶段,选片人为化比较普遍。长期以来,电视剧选购主要依靠电视台内部专业人员和专家的评审来决定是否播出。这种评判机制直接与市场脱钩,对电视的评价也就形成了“播后评价市场化、播前选片人为化”的怪圈。采购阶段出了问题,小李们的市场推广工作也就成了无用功,顶多是锦上添花而已。
在国内电视领域,我们成功模仿了美国尼尔森的播后评价模式和体系,产生了央视索福瑞等数据公司,并开创了一个电视数据行业;但在节目生产阶段,评价体系还远远不够科学。原因还在于两个阶段的市场化程度不同。在播后阶段,属于广告主市场,由于众多国际4A广告商的推动,从而建立了相对科学的评价体系,而在节目生产阶段,市场发育程度还远远不够。
二、视频网站的大数据尝试
我们再看看大视频行业的视频网站是怎样选购和生产节目的。美国互联网巨头亚马逊发布了由其原创内容团队“亚马逊工作室”(Amazon Studios)制作的14部原创电视剧试映集(pilotepisode),允许美国和英国用户买免费观看。电视剧试映集是制作方把一个项目发展为正式剧集之前所开发的样品集,是电视剧集开发过程中的早期阶段。网络用户观看这些试映集,然后投票,亚马逊再根据反馈决定哪些节目可以继续开发,使之成为一部完整的电视剧,最终提供给“亚马逊金牌”(Amazon Prime)付费用户。此外,在初期的剧本写作阶段,亚马逊在线接受电视剧本,并邀请消费者进行评价,然后根据反馈信息选择将要拍摄的项目。
如果说亚马逊工作室还只是基于网民反馈作出评价的话,视频网站Netflix的《纸牌屋》则是成功利用了大数据进行节目生产。《纸牌屋》这部白宫版宫斗戏,是视频网站Netflix的首部原创剧,在美国和其他40个国家及地区成为网络点播率最高的剧集。国内得到独家版权的搜狐视频上线该剧20天后,播放量超343万次,被称为美国版的《甄嬛传》。Netflix拥有2900万名订阅用户,也拥有用户收看习惯和口味偏好的强大数据库。Netflix对用户评分、观看记录和用户好友推荐等信息进行深度挖掘,甚至收集观众按下暂停或快进的数据,从而找出用户喜欢的视频风格,导演或演员等信息。Netflix基于上述这些海量用户信息来决定内容的生产。因此,《纸牌屋》被称为算出来的电视剧,它的成功是大数据与大视频行业联姻的成功。《纸牌屋》的生产过程完全绕开了美国传统电视的生态环境,《福布斯》杂志对其评价是“它不仅仅是很棒的节目,而且是电视史上的大事件”。
再回到传统电视行业,在大数据时代,内容提供商、电视台、广告商以及数据调查公司原本形成的稳固生态链开始被打破。视频网站、IPTV和OTT TV等基于互联网的视频运营商掌握了大量用户信息,这些信息可以被挖掘,从而进行产业链上下游的拓展。
在上游的内容生产领域,内容生产的模式由传统的B2C模式转变成C2B模式,我们通过了解用户的喜好、兴趣点以及用户行为来定制内容,真正做到用户想看什么,就提供什么。这也就解释了国内外的视频网站纷纷进入内容原创领域的原因。在国内,乐视公司成立了乐视影业,盛大文学也成立编剧公司,依托“大数据”创作电视剧本。
在下游的收视评估环节,由于视频运营商掌握了海量和精确的用户和收视数据,原本就充满争议的样本抽样模式开始过时。广告主们虽然坚信尼尔森和索福瑞们的真实性,但也开始逐步采纳运营商的精确数据。如此一来,尼尔森和索福瑞的抽样数据市场将逐步萎缩,数据市场将从抽样模式进入到精确模式。
但尼尔森们也在与时俱进。2013年,尼尔森决定扩大对收视率的定义,不再局限于传统电视网络,推出一个针对OTT互联网电视以及微软Xbox、苹果iPad等多屏的收视率调查系统。尼尔森计划在2万3000多户采样家庭安装新的硬软件统计工具,其中仅有75%来自传统电视网络。但尼尔森的与时俱进,还是建立在基于样本户抽样调查的基础之上,是否能够延缓抽样调查行业的衰落尚难定论,但尼尔森和索福瑞们的消亡,恐怕也只是时间早晚问题。
在下游的另外一个领域是与收视数据紧密相关的广告市场。传统电视是免费商业模式的开创者,即向观众提供免费的节目,然后用观众的注意力换取广告主投放,并获取广告收入,在这个过程中,收视率成为各方通用的交换货币。但大数据的应用将彻底改变这种商业模式,传统的收视率受到质疑,广告商、电视台和数据商多年形成的铁三角关系也将被打破。
大数据最主要的应用是能够挖掘出内在的关联关系。早在上世纪90年代,沃尔玛就凭借遍布全球的卫星信息系统,把关联关系应用于购物篮(market basket analysis)中,可以说是大数据商用的鼻祖。刊登在1998年《哈佛商业评论》上的“啤酒与尿布”故事已经成为全世界MBA的经典教学案例并广为流传。这个故事是这样的:20世纪90年代,沃尔玛的管理人员分析销售数据时发现了一个令人难于理解的现象,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中。经调查发现,这种现象出现在年轻的父亲身上。最终的原因是,在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒。
沃尔玛的大数据是建立在这家零售业帝国遍布全球的庞大信息系统之上,而基于开放互联网的大数据,为很多行业的直接应用提供了便利。同上述“啤酒与尿布”案例不同的是,大数据中的关联关系是很难找到直接原因的,但这并不影响这种关联关系被应用到商业中。在电视行业,大数据的关联信息为广告的定向推送和O2O模式的电子商务留下了发展空间,从而重新定义了电视的商业模式,也给电视的未来发展模式留下了很大的想象空间。
广电系的上市公司上海百视通,作为全球最大的IPTV运营商,这些年也在布局大数据,探索定向内容、定向广告、关联电视等领域。百度公司最近在收购PPS后,依托海量搜索数据,打通爱奇艺和PPS,推出精准的贴片广告形式“一搜百映”,这种大数据在视频广告的应用,必将加速其广告变现能力。
大数据时代,数据挖掘注定成为包括电视台在内的视频运营商的杀手级应用,谁真正获得大数据的基础数据和商业开发能力,谁就会在下一轮发展中占据高位。拥有数据优势的运营商如视频网站和OTT运营商,将会越来越具有竞争优势,传统电视台的市场份额将会逐步被蚕食,视频网站行业的寡头竞争格局必将会在传统电视行业重现;对于电视台来说,建立并提高数据部门的战略地位,从粗放式管理转为精细化管理,用互联网的思维来运营电视,是应对竞争的不二选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17