京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python是一款使用方便,易上手的工具,我们平常在工作中经常会用到,而且同时也是一款功能强大的编程语言,被广泛应用于数据分析、web开发、人工智能等行业。但是无论那个行业,哪个领域,想要熟练使用Python,就必须掌握Python的基础知识。
以下文章来源于:微信公众号Python猫
作者: 豌豆花下猫
从接触 Python 时起,我就觉得 Python 的元组解包(unpacking)挺有意思,非常简洁好用。
最显而易见的例子就是多重赋值,即在一条语句中同时给多个变量赋值:
>>> x, y = 1, 2 >>> print(x, y) # 结果:1 2
在此例中,赋值操作符“=”号的右侧的两个数字会被存入到一个元组中,即变成 (1,2),然后再被解包,依次赋值给“=”号左侧的两个变量。
如果我们直接写x = 1,2 ,然后打印出 x,或者在“=”号右侧写成一个元组,就能证实到这一点:
>>> x = 1, 2 >>> print(x) # 结果:(1, 2) >>> x, y = (1, 2) >>> print(x, y) # 结果:1 2
一些博客或公众号文章在介绍到这个特性时,通常会顺着举一个例子,即基于两个变量,直接交换它们的值:
>>> x, y = 1, 2 >>> x, y = y, x >>> print(x, y) # 结果:2 1
一般而言,交换两个变量的操作需要引入第三个变量。道理很简单,如果要交换两个杯子中所装的水,自然会需要第三个容器作为中转。
然而,Python 的写法并不需要借助中间变量,它的形式就跟前面的解包赋值一样。正因为这个形式相似,很多人就误以为Python 的变量交换操作也是基于解包操作。
但是,事实是否如此呢?
我搜索了一番,发现有人试图回答过这个问题,但是他们的回答基本不够全面。(当然,有不少是错误的答案,还有更多人只是知其然,却从未想过要知其所以然)
先把本文的答案放出来吧:Python 的交换变量操作不完全基于解包操作,有时候是,有时候不是!
有没有觉得这个答案很神奇呢?是不是闻所未闻?!
到底怎么回事呢?先来看看标题中最简单的两个变量的情况,我们上dis 大杀器看看编译的字节码:
上图开了两个窗口,可以方便比较“a,b=b,a”与“a,b=1,2”的不同:
很明显,形式相似的两种写法实际上完成的操作并不相同。在交换变量的操作中,并没有装包和解包的步骤!
ROT_TWO 指令是 CPython 解释器实现的对于栈顶两个元素的快捷操作,改变它们指向的引用对象。
还有两个类似的指令是 ROT_THREE 和 ROT_FOUR,分别是快捷交换三和四个变量(摘自:ceval.c 文件,最新的 3.9 分支):
预定义的栈顶操作如下:
查看官方文档中对于这几个指令的解释,其中 ROT_FOUR 是 3.8 版本新加的:
ROT_TWO
Swaps the two top-most stack items.
ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.
ROT_FOUR
Lifts second, third and forth stack items one position up, moves top down to position four.New in version 3.8.
CPython 应该是以为这几种变量的交换操作很常见,因此才提供了专门的优化指令。就像 [-5,256] 这些小整数被预先放到了整数池里一样。
对于更多变量的交换操作,实际上则会用到前面说的解包操作:
截图中的 BUILD_TUPLE 指令会将给定数量的栈顶元素创建成元组,然后被 UNPACK_SEQUENCE 指令解包,再依次赋值。
值得一提的是,此处之所以比前面的“a,b=1,2”多出一个 build 操作,是因为每个变量的 LOAD_FAST 需要先单独入栈,无法直接被组合成 LOAD_CONST 入栈。也就是说,“=”号右侧有变量时,不会出现前文中的 LOAD_CONST 一个元组的情况。
最后还有一个值得一提的细节,那几个指令是跟栈中元素的数量有关,而不是跟赋值语句中实际交换的变量数有关。看一个例子就明白了:
分析至此,你应该明白前文中的结论是怎么回事了吧?
我们稍微总结一下:
以上就是小编今天跟大家分享的python基础语句的一些内容了,希望对大家和使用python有帮助。任何学习都不是一蹴而就的,平时大家要注意多总结,多复盘,并结合实际项目去应用!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16