
Pandas是一款很强大的Python库,具有很多方便的功能,今天小编就给大家分享用Pandas修改样式。
以下内容转载于早起Python微信公众号。
作者:刘早起
文章来源:早起Python
前言
在之前的很多文章中我们都说过,Pandas与openpyxl有一个很大的区别就是openpyxl可以进行丰富的样式调整,但其实在Pandas中每一个DataFrame都有一个Style属性,我们可以通过修改该属性来给数据添加一些基本的样式。
使用说明
我们可以编写样式函数,并使用CSS来控制不同的样式效果,通过修改Styler对象的属性,将样式传递给DataFrame,主要有两种传递方式
Styler.applymap:逐元素
Styler.apply:列/行/表方式
Styler.applymap通过DataFrame逐个元素地工作。Styler.apply根据axis参数,按列使用axis=0.按行使用axis=1.以及axis=None作用于整个表。所以若使用Styler.applymap,我们的函数应返回带有CSS属性-值对的单个字符串。若使用Styler.apply,我们的函数应返回具有相同形状的Series或DataFrame,其中每个值都是具有CSS属性值对的字符串。
不会CSS?没关系,作为调包侠的我们大多是改改HTML颜色代码即可完成样式修改,下面看一些示例。
一些例子
基本样式
首先我们创建一组没有任何样式的数据
我们之前说过,DataFrame是有style属性的,所以在没有做任何修改的情况下,使用df.style应该和上图一样
现在让我们编写一个简单的样式函数,该函数可以将负数变为红色,使正数保持黑色。
def color_negative_red(val):
color = 'red' if val < 0 else 'black'
return 'color: %s' % color
现在来应用这段函数(思考Excel如何实现)
现在如果我们想突出显示每列中的最大值,需要重新定义一个函数
def highlight_max(s):
is_max = s == s.max()
return ['background-color: yellow' if v else '' for v in is_max]
因为之前我们是以元素为单位判断,所以使用的是.applymap,所以现在我们应对列进行.apply操作
现在可以使用
df.style.applymap(color_negative_red).apply(highlight_max)
来混合修改样式或使用.\实现
当然我们也可以通过修改样式函数并使用.apply来高亮整个DataFrame的最大值,
切片
当然我们也可以使用subset通过切片来完成对指定列进行样式修改,比如高亮部分列的最大值
df.style.apply(highlight_max, subset=['B', 'C', 'D'])
对于行和列切片,可以使用我们熟悉的.loc,不过目前仅支持基于标签的切片,不支持位置切片。
格式化输出
我们也可以使用Styler.format来快速格式化输出,比如将小数格式化为百分数
也支持使用字典或lambda表达式来更灵活的使用
当然是支持和之前的样式结合使用
内置样式
开发者们为了尽可能的让作为调包侠的我们使用起来更方便,已经内置了很多写好的样式,拿走就用,比如将空值设置为红色
或是结合seaborn使用热力图
现在我们就可以通过修改Styler.background_gradient来轻松的修改颜色等样式
最后我们可以将数据修改为条形图的样式,这也是我最喜欢的一个功能,能够快速的看出数据的变化!
在最新的版本中可以进一步自定义条形图:我们现在可以将df.style.bar以零或中点值为中心来快速观察数据变化,并可以传递颜色[color_negative, color_positive],比如使用align='mid':
以上就是对Pandas中如何修改样式的一个简单介绍,更多的操作可以在官方文档https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html中找到与学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28