京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析实战—用户偏好分析_数据分析师
熟悉网站分析的朋友们都知道,GA(Google Analytics)中可以关联不同的维度(Dimension),比如“城市”和“产品”,通过关联(Sub-relation),我们可以得到不同城市下,各产品的相关数据。在Omniture的几个网站分析工具中,也同样能够对某个eVar根据按另一个eVar来breakdown。
好了,废话不多说,接下来就让我们一起去发现一些有趣的事情!
Step 1. 获取数据
1.a 请生成一张报表,
维度(Dimension):城市(Cities)
指标(Metric):购买数量/销量(Units)
时间段可根据需要设定,时间粒度(Granularity)在Omniture中选None/aggregate,表示把时间以聚合的方式展现,而不是按daily、monthly等方式来划分,GA中同理。
好了,我们得到了一张关于各个城市的访客所产生的订单数的报告,第三列Ratio是经过计算得到的各城市订单数占总体的比例。这里假定了只有图表中所列出的10个城市,所有数据均为模拟数据。
1.b 类似上一张城市报告,我们再获得一份产品类(Product Category)的报告,维度:Category, 指标:Units,获得的报告如下
* 这里需要注意,你所看到的两张表中的Units总量是一样的,但如果你选择了Orders作为Metric的话,那么品类报告中的Orders应该会大一些,因为有些用户的单个订单横跨了不同的产品类。比如实际情况是你下了一个订单,包含了一台VAIO和一台DSC,那么在产品类报告中这1个订单会被分拆为2个,各自归属到2个品类中。如果Orders总量相差不大,那不用太在意这个差异,如果你觉得差异让你无法接受的话,那也不难,对城市报告中的数据做个简单处理:处理后各城市订单数 = 处理前各城市订单数 * (产品类报告订单总数 / 处理前城市订单总数)。但是这样的处理会稍许影响到后续介绍的计算过程,当然,只要你保持头脑清醒,相信在理解了算法后根据需要来修改也不是难事。
1.c 获得一份Sub-relation的报告,第一个维度选择城市,第二个维度选产品类,指标仍然是Units,报表如下:
City Breakdown by Category
限于篇幅,图中只显示了Shanghai的数据,实际应该是所有其它城市都会得到跟Shanghai类似结构的数据。由于本例中共有10个城市和10个产品类,因此得到的数据应该是10*10=100行。同样,这里的Units总量应该与之前的相同。
从表中我们可以知道,在Shanghai所产生的962个Units中,VAIO占了378个,DSC占了112个,这个很容易理解。
Step 2. 数据处理
Difference
如上图所示,我们在1.c报表的基础上,新增一列Predicted Units,作为我们预测的商品销量,怎么计算呢?Predicted Units = 1.a中Shanghai的 Units * 1.b中VAIO的Ratio(或者1.a中Shanghai 的 Ratio * 1.b中VAIO的Units也是一样的)
然后我们再新增一列Difference,表示实际值与预测值的差异程度,计算方式为:
Difference = (Units – Predicted Units) / Predicted Units
Step 3. 数据解读
不难理解,如果实际值大于预测值,Difference为正,反之为负,实际值与预测值差异越大,Difference的绝对值越大。
既然需要的数据都有了,该怎么看我们用户的偏好呢?如何去发现那些有价值的信息呢?
Difference 一列中,最抓人眼球(eye-catching)的显然是Shanghai-DSC那行了,372%。这表示,Shanghai的用户比我们想象中的更热衷于DSC产品,而且是远远大于预期。同样,VAIO、Tablet等产品在Shanghai用户中的销售情况也比我们的预期要好。而HIFI的-80%,MDR的-59%,说明了Shanghai的用户对这些产品并不是非常感兴趣。当然,如果在做这个分析前,你已经对你的某些产品做了定向投放,那么会一定程度上影响该报告的解读,这时候,我的建议是:
1. case by case的来分析那些定向投放了的产品,需要综合考虑你的投放情况及业务情况
2. 剔除那部分定向投放了的产品及密切相关的产品,从而解读那些未受太大影响的产品数据。
到这里,如果在读这篇文章的你正从事Online Marketing等相关的工作,不知道有没有能够触动到你的神经呢?SEM、adwords等广告投放平台中的地理位置定位,能通过这个分析得到改进吗?花钱买的广告,真的投放给那些感兴趣的用户了吗?……
本文所谓的预测,并没有基于什么很高级的算法,只是先假定了我们的所有用户的偏好是一致的,基于这个假设,两个维度关联后的情况应当与两个维度独立时所推断的情况一致。还是举个简单的例子来说明吧。假定双胞胎姐妹总共吃了4个水果,又知道水果中香蕉被吃了2个,苹果也被吃了2个。如果姐妹俩的偏好一致,我们可以认为姐妹应该各自吃了1个香蕉1个苹果。然而真实的情况是姐姐吃了2两个香蕉,妹妹吃了2两个苹果,也就是说,姐姐比我们所认为的多吃了1个香蕉而少吃了1个苹果,那么她的偏好应该是爱吃香蕉而不爱吃苹果。
当然,这样的预测方法由于少考虑了很多因素而并变得不是很精准,但笔者认为,这不会是什么很大的问题。虽然我们的计算过程是定量的,但我们的目的只是定性而已,380%的Difference在这个方法中跟370%没有什么太大的区别。而且,以损失一些精度为代价,获得更高的效率并非什么不可原谅的事,毕竟我们是在商场里作战,而不是在学校码论文。
最后想说的是,本文所举例子是不同城市用户关于不同产品类的购买偏好分析,实际上,朋友们完全可以根据自己的业务需求来驱动类似的分析,比如关联用户的操作系统(Operating System)和浏览器(Browser),指标选择访问数(Visits),便能了解到你网站的用户在不同操作平台上更喜欢用哪种浏览器。
理论上来说,任意两个维度都可以关联起来,且能说明些问题,但不建议强行地去关联两个维度,然后绞尽脑汁地去赋予它某种意义,不要为了分析而分析。还是那句话,以业务需求来确定分析目标,再以分析结果来驱动业务发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19