
半监督学习(SSL),全称Semi-Supervised Learning,类属于机器学习(Machine Learning,ML)。在只有少量标记样本,大部分样本都是无标记的情况下,可以使用半监督学习方法,根据无标记样本与标记样本间的相似度、以及无标记样本潜在的分布,这两个核心思想,对无标记的样本进行标记。下面介绍一下半监督学习的种类:
1 生成式方法
生成式方法(generative methods)是直接基于生成式模型的方法,这一方法是假设所有数据(无论是有标记还是没有标记)都是由同一潜在的模型生成的。这个假设利用潜在模型的参数,将未标记数据与学习目标联系起来,而未标记数据的标记能够当作模型的缺失参数,然后基于EM算法,进行极大似然估计求解。生成式方法的重点在于生成式模型的假设,不同的模型假设会产生不同的方法。当然这一方法的关键也就是这个模型假设必须是准确的,也就是假设的生成式模型必须是与真实数据分布相吻合的;不然利用未标记数据反而会降低泛化性能。生成式方法方法实现简单,但是在实际应用中,事先很难做出准确的模型假设。
半监督支持向量机,Semi-Supervised Vector Machin,是支持向量机在半监督学习上的推广。在不考虑未标记样本的情况下,支持向量机试图找到最大间隔划分超平面;在考虑未标记样本的情况下,半监督支持向量机试图找到,能将两类有标记样本区分开,并且穿过数据低密度区域的划分超平面。低密度分隔(low-densityseparation)假设是聚类假设在考虑了线性超平面划分后的推广。TSVM是采用局部搜索的策略来进行迭代求解,也就是首先使用有标记样本集训练出一个初始SVM,接着通过该学习器对未标记样本进行打标,这样使得所有样本都有了标记,并基于这些有标记的样本重新训练SVM,之后再寻找易出错样本不断调整。
3协同训练(基于分歧的方法)
协同训练基于大量模型,让每一个模型去寻找最有把握的样本,并作为其他模型的训练样本,这一互相学习、共同进步的过程不断迭代,直到两个分裂期不再变化。不同的视图、不同的算法、不同的数据、不同的参数都是产生差异的渠道。协同训练能够通过将样本集拆分成不同的子样本集,并分别在子样本集上训练模型,就会产生多个模型;也可以对样本集建立不同的分类模型,通过各个模型决定样本的置信度,与集成学习类似。
4图半监督学习
5半监督聚类
聚类是无监督学习任务,为了利用现实任务中获得的监督信息,提出半监督聚类(semi-supervised clustering)来利用监督信息以获得更好的效果。
聚类任务中获得的监督信息分两种:1)有必连(must-link)和勿连(cannot-link)约束,必连是指样本必属于同一个簇,勿连是指样本必不属于同一个簇;2)含有少量的有标记样本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28