京公网安备 11010802034615号
经营许可证编号:京B2-20210330
半监督学习(SSL),全称Semi-Supervised Learning,类属于机器学习(Machine Learning,ML)。在只有少量标记样本,大部分样本都是无标记的情况下,可以使用半监督学习方法,根据无标记样本与标记样本间的相似度、以及无标记样本潜在的分布,这两个核心思想,对无标记的样本进行标记。下面介绍一下半监督学习的种类:
1 生成式方法
生成式方法(generative methods)是直接基于生成式模型的方法,这一方法是假设所有数据(无论是有标记还是没有标记)都是由同一潜在的模型生成的。这个假设利用潜在模型的参数,将未标记数据与学习目标联系起来,而未标记数据的标记能够当作模型的缺失参数,然后基于EM算法,进行极大似然估计求解。生成式方法的重点在于生成式模型的假设,不同的模型假设会产生不同的方法。当然这一方法的关键也就是这个模型假设必须是准确的,也就是假设的生成式模型必须是与真实数据分布相吻合的;不然利用未标记数据反而会降低泛化性能。生成式方法方法实现简单,但是在实际应用中,事先很难做出准确的模型假设。
半监督支持向量机,Semi-Supervised Vector Machin,是支持向量机在半监督学习上的推广。在不考虑未标记样本的情况下,支持向量机试图找到最大间隔划分超平面;在考虑未标记样本的情况下,半监督支持向量机试图找到,能将两类有标记样本区分开,并且穿过数据低密度区域的划分超平面。低密度分隔(low-densityseparation)假设是聚类假设在考虑了线性超平面划分后的推广。TSVM是采用局部搜索的策略来进行迭代求解,也就是首先使用有标记样本集训练出一个初始SVM,接着通过该学习器对未标记样本进行打标,这样使得所有样本都有了标记,并基于这些有标记的样本重新训练SVM,之后再寻找易出错样本不断调整。
3协同训练(基于分歧的方法)
协同训练基于大量模型,让每一个模型去寻找最有把握的样本,并作为其他模型的训练样本,这一互相学习、共同进步的过程不断迭代,直到两个分裂期不再变化。不同的视图、不同的算法、不同的数据、不同的参数都是产生差异的渠道。协同训练能够通过将样本集拆分成不同的子样本集,并分别在子样本集上训练模型,就会产生多个模型;也可以对样本集建立不同的分类模型,通过各个模型决定样本的置信度,与集成学习类似。
4图半监督学习
5半监督聚类
聚类是无监督学习任务,为了利用现实任务中获得的监督信息,提出半监督聚类(semi-supervised clustering)来利用监督信息以获得更好的效果。
聚类任务中获得的监督信息分两种:1)有必连(must-link)和勿连(cannot-link)约束,必连是指样本必属于同一个簇,勿连是指样本必不属于同一个簇;2)含有少量的有标记样本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12