
层次聚类,即Hierarchical Clustering,是一种聚类算法,通过对不同类别数据点间的相似度的计算,从而创建一棵有层次的嵌套聚类树。
一、层次聚类算法原理
在聚类树中,树的最底层是不同类别的原始数据点,树的顶层则是一个聚类的根节点。层次聚类算法按照层次分解的顺序可分为:自下向上也,就是凝聚的层次聚类算法,以及自上向下即分裂的层次聚类算法(agglomerative和divisive),又可以被称为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法简单理解为:一开始每一个个体(object)都是一个类,然后再根据linkage寻找同类,最后合并,形成一个“类”。自上而下法与自下而上法相反,是开始所有个体都归属于一个“类”,然后通过linkage排除异类,最后每一个个体都成为一个“类”。
在层次聚类算法中, 最关键的在于计算两个聚类间的距离,根据计算两个聚类之间距离的算法的不同,能够分为以下四种聚类算法:
Single Linkage:两个数据集间的最小距离
Complete Linkage:两个数据集间的最大距离
以上两种方法很容易受到极端值的影响,计算大样本集效率较高。
Average Linkage:任意两个数据集的距离之和的平均值。这种方法虽然计算量比较大,但是这种度量方法更合理。
Ward:最小化簇内方差。假设聚类A的中心点为a,聚类B的中心点为b,A、B合并后的聚类为C,其中心点为c,则聚类A、B的距离为:
二、层次聚类的优缺点
优点:
1.距离和规则的相似度比较容易定义,限制很少;
2.不需要预先制定聚类数;
3.能够发现类的层次关系;
4.能够聚类成其它形状
缺点:
1.计算的复杂度很高;
2.即使是奇异值也会产生很大影响;
3.算法很可能会聚类成链状
三、sklearn中的层次聚类
##导入库
from sklearn.cluster import AgglomerativeClustering
##建模,并指定聚类个数
ward = AgglomerativeClustering(n_clusters=3)
##拟合并预测数据
ward_pred = ward.fit_predict(data)
绘制系统树:
from scipy.cluster.hierarchy import linkage,dendrogram
import matplotlib.pyplot as plt
#指定连接类型为离差平方和法
linkage_type = ‘ward’
#拟合数据,并得到关联矩阵
linkage_matrix = linkage(X, linkage_type)
#创建窗口
plt.figure(figsize=(22.18))
#将关联矩阵输送到系统方法
dendrogram(linkage_matrix)
#显示
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27