
感知机(Perceptron)或者叫做感知器,是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络,是机器学习领域最基础的模型,被誉为机器学习的敲门砖。
感知机是生物神经细胞的简单抽象,可以说是形式最简单的一种前馈神经网络,是一种二元线性分类模型。感知机的输入为实例的特征向量,输出为实例的类别取+1和-1.虽然现在看来感知机的分类模型,大多数情况下的泛化能力不是很强,但是感知机是最古老的分类方法之一,是神经网络的雏形,同时也是支持向量机的基础,如果能够将感知机研究透彻,对我们支持向量机、神经网络的学习也有很大帮助。
一、感知机模型
感知机的几何解释:线性方程
二·、感知机算法
1.原始形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.w = np.zeros([1, len(train_data.T)], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result def nomalize(self, x): if x > 0 : return 1 else : return -1 def model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, x, y): # w = w + n*y_i*x_i self.w = self.w + self.eta*y*x # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 while count > 0: # count-- count = count - 1 if len(self.train_data) <= 0: print("exception exit") break # random select one train data index = randint(0,len(self.train_data)-1) x = self.train_data[index] y = self.real_result.T[index] # wx+b predict_v, linear_y_v = self.model(x) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(x, y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 50000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()2.对偶形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.alpha = np.zeros([train_data.shape[0], 1], int) self.w = np.zeros([1, train_data.shape[1]], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result self.gram = np.matmul(train_data[0:train_data.shape[0]], train_data[0:train_data.shape[0]].T) def nomalize(self, x): if x > 0 : return 1 else : return -1 def train_model(self, index): temp = 0 y = self.real_result.T # Here are matrix dot multiply get one value for i in range(len(self.alpha)): alpha = self.alpha[i] if alpha == 0: continue gram_value = self.gram[index].T[i] temp = temp + alpha*y[i]*gram_value y = temp + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def verify_model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, index, x, y): # alpha = alpha + 1 self.alpha[index] = self.alpha[index] + 1 # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 train_data_num = self.train_data.shape[0] print("train_data:", self.train_data) print("Gram:",self.gram) while count > 0: # count-- count = count - 1 if train_data_num <= 0: print("exception exit") break # random select one train data index = randint(0, train_data_num-1) if index >= train_data_num: print("exceptrion get the index") break; x = self.train_data[index] y = self.real_result.T[index] # w = \sum_{i=1}^{N}\alpha_iy_iGram[i] # wx+b predict_v, linear_y_v = self.train_model(index) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(index, x, y) for i in range(len(self.alpha)): x = self.train_data[i] y = self.real_result.T[i] self.w = self.w + float(self.alpha[i])*x*float(y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size-1): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.verify_model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 1000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # train_data = np.mat([[3,3],[4,3],[1,1]]) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15