
1、Numpy
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。它是Python创建的所有更高层工具的基础。以下是它提供的一些功能:
a、N维数组,一种快速、高效使用内存的多维数组,它提供矢量化数学运算 。
b、你可以不需要使用循环,就对整个数组内的数据进行标准数学运算。
c、非常便于传送数据到用低级语言(如C或C++)编写的外部库,也便于外部库以Numpy数组形式返回数据。
NumPy不提供高级数据分析功能,但有了对NumPy数组和面向数组的计算的理解,能帮助你更有效地使用像Pandas之类的工具。
2、Pandas
Pandas是一个开放源码的Python库,它使用强大的数据结构提供高性能的数据操作和分析工具。Pandas包含高级数据结构,以及和让数据分析变得快速、简单的工具。它建立在NumPy之上,使以NumPy为中心的应用变得简单。Pandas用于广泛的领域,包括金融,经济,统计,分析等学术和商业领域。
优点:
a、带有坐标轴的数据结构,支持自动或明确的数据对齐。这能防止由于数据没有对齐,以及处理不同来源的、采用不同索引的数据而产生的常见错误。
b、使用Pandas更容易处理缺失数据。
c、合并流行数据库(如:基于SQL的数据库)中能找到 的关系操作。
Pandas是进行数据清洗/整理(data munging)的最好工具。
3、Matplotlib
Matlplotlib是Python的一个可视化模块,是一个Python 2D绘图库,可以生成各种硬拷贝格式和跨平台交互式环境的出版物质量数据。它让你方便地制作线条图、饼图、柱状图以及其它专业图形。使用Matplotlib,我们可以定制所做图表的任一方面。它支持所有的操作系统下不同的GUI后端(back ends),并且可以将图形输出为常见地矢量图和图形格式,如:PDF、SVG、JPG、PNG、BMP和GIF等。而且Matplotlib可用于Python脚本,Python和IPython shell,Jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包。
4、Scipy
Scipy库依赖于NumPy,是一个开放源码的BSD许可的数学,科学和工程库。它提供便捷和快速的N维向量数组操作。SciPy库的建立就是和NumPy数组一起工作,并提供许多对用户友好的和有效的数值例程,如:数值积分和优化。SciPy模块用于优化、线性代数、积分以及其它数据科学中的通用任务。
5、Scikit-learn
Scikit-learn是一个用于机器学习的Python模块。它建立在Scipy之上,提供了一套常用机器学习算法,让使用者通过一个统一的接口来使用。Scikit-learn有助于你迅速地在你的数据集上实现流行的算法。它包含了许多用于标准机器学习任务的工具,如:聚类、分类和回归等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02