
计算机视觉是一门研究如何让计算机“看”的学科。
简单来说,就是指利用摄影机和电脑等机器,来代替人眼对目标进行识别、跟踪以及测量等,并进一步对图形进行处理,使之成为更适合人眼观察或传送、检测的图像。
目前,非常火的VR、AR,3D处理等方向,都是计算机视觉的一部分。图像处理是计算机视觉的关键,因此要研究1和学习计算机视觉,必须掌握图像知识,下面小编整理了一些图像的基础知识,希望对各位小伙伴学习和研究计算机视觉有所帮助。
一张图像所包含的信息:维数、高度、宽度、深度、通道数、颜色格式、数据首地址、结束地址、数据量等等。
图像深度:存储每个像素所用的位数(bits)
当一个像素占用的位数越多时,它所能表现的颜色就更多,更丰富。
举例:一张400*400的8位图,这张图的原始数据量是多少?像素值如果是整型的话,取值范围是多少?
1.原始数据量计算:400 * 400 * ( 8/8 )=160.000Bytes
(约为160K)
2.取值范围:2的8次方,0~255
图片格式与压缩:常见的图片格式JPEG,PNG,BMP等本质上都是图片的一种压缩编码方式
举例:JPEG压缩
1.将原始图像分为8*8的小块,每个block里有64pixels。
2.将图像中每个8*8的block进行DCT变换(越是复杂的图像,越不容易被压缩)
3.不同的图像被分割后,每个小块的复杂度不一样,所以最终的压缩结果也不一样
图像分类:
1、二值图像(Binary Image)
即图像上的每一个像素只有两种可能的取值或灰度等级状态,0和1.0代表黑(背景),1代表白(前景)。每个像素只需要1Bit就可以完整存储信息。
2、灰度图像(gray image)
灰度图和二值图像一样只包含一个通道的信息,是二值图像的进化版,是彩色图像的退化版。灰度图像每个像素只有一个采样颜色,通常为从最暗黑色到最亮的白色的灰度,使用8Bit保存信息,有256级灰度。(如果用16位,则有65536级)
3、彩色图像
彩色图像有三个颜色通道,即R(红)、G(绿)、B(蓝),三个分量来表示,分量介于(0.255)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02