
游戏数据分析:流失玩家分析之道_数据分析师
前段时间说过一些关于玩家生命周期的问题,其实那些有点大,有点虚,从宏观的角度了解我们此时此刻正在做的分析是属于那一部分,哪一个体系的,说实话,这是为了建立一种意识而要做的工作,玩家生命周期价值源于电信行业的客户生命周期管理和PLC(产品生命周期)的解读和应用,限于本人水平和能力因素,不够深刻,全面,在此请各位谅解,以后的内容会逐步深入到这个体系之下的很多细节的问题探讨,今天就和大家简单说说流失率。
说到流失率,我们可以考察,可以分析,可以利用的点实在是太多了,这里我也不可能把所有的东西都覆盖,仅从几个指标来说说,至于其他的关联分析部分需要大家自己来看和分析(不要陷入一个误区,那就是我说的这些就是流失率的全部)。
流失率在网游产品的运营过程中,是非常重要的一块,可惜很多时候我们做的并不够细致和仔细。流失分析其实是一个系列的过程,不仅仅是找到流失的原因(这是我们做的最多的部分),还有其他的流失管理部分,而这里大家可以看出来这是一个过程。
流失特征提取:准确的说这是玩家流失的特征的提取,哪些玩家有流失的倾向,比如玩家处在何等级可能流失加剧,在线时长达到多少可能会有游戏疲倦加剧流失,与那部分系统交互较多的玩家易流失,那个角色的玩家群体流失倾向明显。这个阶段我们做的很多工作室一种预警性质的工作,通过对数据的处理分析得到玩家可能流失的特征。
流失原因分析:流失原因的分析首先我们可以从前期提取特征的方面下手分析,先把提取的流失特征进行整合分析,归结一下是否是玩家流失的原因。如果流失原因不是我们前期提取的预警流失的特征,且玩家依旧流失,我们就需要找到新的流失因素,并把这些因素归结到流失特征提取环节,这样流失特征会积攒大量的流失预警的提取数据点。
再者,尽管我们进行流失特征提取并采取防流失的
手段,但是可能效果和受众并不是很理想,此时依旧会有比较大的流失,因此我们还要分析和评估挽留策略的效果。
挽留策略制定:其实挽留策略的制定在流失特征提取时就已经制定了,在玩家非流失阶段就做好流失的预防措施,这是防流失最好的办法,当已经发生流失了,某种意义上说是我们制定的策略效果不佳或者未考虑的因素促使流失的上升,挽留策略是我们提升人气,降低流失的关键之举。但是不意味着好的策略就一定会有好的结果。
挽留策略实施:挽留策略制定好了,还需要整个运营团队,营销团队,程序,策划的共同配合执行和实施,才能达到良好的效果,而这也不是绝对的,往往我们会受制于某些因素的影响,比如实施难度,排期等等。
挽留策略评估:如同我们所做的一个活动一样,我们需要有针对型的进行评估和分析,目的在于不断的修正我们的策略,不断适应我们游戏玩家和产品的发展需求。今天就说怎么来判断流失用户,流失用户的标准是什么?
流失的定义之说
在对于流失问题上,每个企业和产品会根据自己的需求来定义流失率,流失率定义的分类方法有很多,确定什么是流失用户对于完成我们的流失分析很重要。流失分析主要是从玩家属性和玩家与产品的关系两面入手。玩家属性多是玩家的物理属性,而我们要分析的是玩家与产品的关系,在这方面我们从玩家的整体在游戏的留存情况下手。
在解释以上的术语之前,我们约定以上的用户分类分析是以月为度量单位展开的分析。并且以下的分析是以历史玩家和登录时间间隔为维度进行的定义和分析研究。关于流失的分析还可以从新玩家和登录时间间隔考察、历史玩家和付费与否、新登玩家和付费与否,不断将几种标准组合,就会进一步提取分析流失人群的特征。此外,还有比如定向的研究付费玩家的购买流失分析等等。
历史用户:如上述,是在上个月之前就已经成为游戏的玩家。而今天我们所要进行的用户定义是历史用户,再此前提下进行以下的流失定义和分析。如果用一个伪甘特图表示如下所示:
留存用户:历史登录过游戏,且上个月和本月均登录游戏的玩家,这类玩家是留存玩家,伪甘特图如下:
沉默用户:也叫做轻度流失用户,一般的网游产品定义的流失就到此层次就OK了,但是这只是轻度流失,沉默用户是历史登录过游戏,上个月登录但是本月未登录游戏的玩家。伪甘特图如下:
流失用户:这里其实是重度流失,历史上有过登录,但是上个月和本月均未登录游戏的玩家,伪甘特图如下:
回流用户:历史有过登录行为,上个月未登录,但是本月登录游戏的玩家,伪甘特图如下所示:
植物用户:所谓植物用户主要分两类,一类是历史用户在上月和本月都没有登录的情况下,在下个月玩家回归游戏,此类用户称之为唤醒用户,如同植物人最后苏醒一样,该类用户的回归完成了一个闭环的过程。
所谓的闭环是玩家从唤醒状态最终回归到留存或者回流的状态(按照定义是这样)。此外还有一类用户就是没有被唤醒的植物用户,这一类就基本上从游戏中流失掉了。
以上是几类不同程度流失用户的详细解释和描述,这几类用户的细分,可能有些细致了,然而精准的把握这几类用户将有助于帮助我们寻找玩家的流失特征,从而在不同的时期,针对不同的玩家制定相应的挽留策略,出发点就是从每一种过渡状态尽可能降低玩家的转化,因为每当用户向下一个状态转化,就意味着流失的加剧和损失上升。
今天的流失细分主要是从老玩家的角度出发的,有一组数据说明了我们细分用户,挽留老用户的必要性。一个企业争取一个新客户的成本是保留老客户成本的5倍;客户流失率降低5%,利润增加25%-85%;一个满意的客户会带来8笔潜在的生意,一个不满意的客户则可能影响25个人的购买意愿,忽略对老用户的关注,大多数企业会在5年内流失一半的顾客。尽管没有针对网友行业的数据,不过就此看出来,挽留策略是企业盈利的保证和核心,而挽留策略从哪里来针对谁,这就是流失分析的要做的事。
最后回归到开始的话题上,如果我们要做一次活动的评估,究竟该怎么下手?这里我觉得有一方面通过对以上的人群进行分析,能够看到一些我们想要的。我们把人群找出来了,下面通过一系列的具体分析找出一次活动该如何分析,该如何制定下次活动,有针对的,精准的定位人群,精准营销。
活动对象:通过聚类分析、异常分析、RFM分析、决策树、神经网络、logistics等方法提炼不同人群的特征,进而有的放矢;
如何营销:不同的人群,不同的购买习惯,可以使用关联分析、序列分析;
时间营销:挖掘整个玩家的在时间维度上变化和行为,生命周期挖掘、时间序列、回归分析;
如何评估:T、卡方检验、对比分析,环比同比。
以上为流失分析的一种设计方式,如之前所提到的,流失分析还可以从其他维度开展,但是尽管这样设计了,实际操作时还要结合很多的方法和其他设计进行分析,比如对于每类人群进行聚类分析,寻找与产品 等有关的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13