
首先按照惯例先来认识下直方图是谁,以下是从维基百科搬运过来的直方图的定义:
在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因为直方图的长度及宽度很适合用来表现数量上的变化,所以较容易解读差异小的数值。
直方图也是用条形进行标注的,而条形图和直方图犹如孪生兄弟般让很多人都傻傻分不清,那么我们就先来好好区分一下这两种图形吧:
单纯文字不够直观的话,我们来个图感受下:
假设我们有一组数据,是一个学校200位同学的身高数据,如果想要知道该校学生身高的分布,那么直方图再合适不过了。
这里我用随机数生成了200个值在150到180之间的数表示身高信息:
data = np.random.randint(150,180,200) data
输出的结果:
array([162, 166, 158, 166, 165, 170, 157, 156, 164, 161, 154, 176, 166, 176, 153, 169, 164, 153, 171, 175, 171, 173, 155, 165, 168, 160, 162, 150, 151, 169, 166, 152, 174, 176, 160, 155, 158, 152, 159, 179, 179, 168, 178, 166, 174, 171, 167, 166, 165, 163, 164, 153, 153, 153, 162, 167, 169, 155, 155, 175, 161, 151, 173, 154, 151, 151, 166, 168, 167, 173, 166, 164, 175, 172, 163, 175, 154, 169, 160, 174, 163, 167, 156, 154, 157, 169, 160, 176, 150, 154, 158, 167, 164, 153, 152, 165, 165, 160, 167, 161, 164, 177, 177, 159, 161, 171, 169, 150, 165, 156, 156, 155, 165, 164, 179, 164, 179, 155, 172, 151, 178, 171, 164, 165, 161, 166, 170, 175, 163, 163, 179, 175, 173, 150, 171, 150, 178, 175, 152, 176, 168, 150, 172, 166, 176, 170, 174, 174, 152, 158, 171, 165, 167, 152, 163, 167, 164, 151, 174, 169, 169, 166, 167, 168, 179, 160, 179, 156, 168, 168, 172, 175, 160, 165, 160, 161, 164, 179, 158, 176, 175, 154, 167, 159, 153, 169, 151, 158, 163, 169, 155, 165, 178, 151, 168, 164, 169, 177, 150, 169])
以上就是200位同学的身高信息了,存储在一个数组中。
如果是常见的查看分布,直方图很容易绘制,这里我们通过这组数据探索下直方图函数中各个参数的作用,以更游刃有余的绘制符合需求的直方图。
bins参数指的是要将数据分成几组,它接收的参数可以是整数,也可以是序列,还可以是字符串,常用的是整数和序列。
通过代码来看一下区别:
fig = plt.figure(figsize=(16,4)) pic1 = fig.add_subplot(131) plt.hist(data) plt.title("bins默认10") pic2 = fig.add_subplot(132) plt.hist(data,bins = 15) plt.title("bins = 15") pic3 = fig.add_subplot(133) plt.hist(data,bins = [150,153,156,159,162,165,168,171,174,179]) plt.title("bins取值为序列");
能够看出即使是同一个数据集,分组的情况不同,呈现出来的分布也是有区别的,所以如何分组分成几组也是有学问的。
如果传给参数的是序列,则表示将每个分组的临界值都标识出来,缺点是比较麻烦,优点是很灵活,可以自主决定每个组的组距,每个组的组距都可以是不同的,如果分5组记得需要的临界值是6个,参数序列中需要有6个数值。
一般绘制直方图,都是对整个数据集绘制,有时候可能会有这样的需求,比如我想看该校中身高在155cm到175cm之间的身高分布,那么就需要将整个数据集中符合要求的身高挑选出来绘制直方图,实际上不用这么麻烦,用range参数就可以解决,这个参数就是指定绘图时使用数据的范围的,它接收的是一个元组,元组中放入两个数值表示所取数据的范围。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('range默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,range=(155,175)) #设置范围从155-175 plt.title('range=(155,175)');
能够看到x轴的数值范围发生了变化,整个直方图的形状也发生了变化。
这个参数的意思其实很直观,参数名字直译成中文就是密度的意思。普通的直方图y轴表示的都是频数,而通过density参数可以将y轴转化成密度刻度,这个参数接收布尔值,默认为None。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) #y轴表示计数 plt.title('density默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10, density=True) # density=True 将原本y轴的计数转换成概率密度的计数,直方图下面积为1 plt.title('density=True');
虽然两个图的形状是完全一模一样的,但是细看就能发现y轴的数值不一样,具体的参数作用已经以备注的形式标注到代码中了哦。
这里涉及到了另一个参数normed,这个参数已经被弃用了,它的作用和density一样,只用density就可以了,
大家对这个参数应该不陌生,它经常出现,表示权重。没错在这里也是表示设置权重。它接收的是一个序列,序列中是数值,数值的数量和原数据集中元素的个数一致,也就是每个数值都有自己单独的权重,我用随机数生成了200个数值作为权重传给参数,看一下和不设置权重时有哪些变化。
x0=np.random.rand(200)#生成总和为1的200个数,设置随机权重 ratio=1/sum(x0) x1=x0*ratio fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('weights默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,weights=x1) plt.title('设置weights');
当所有元素的权重都一样时是第一幅图的情况,而进行权重设置后,分布情况发生了变化,而且y轴也发生了变化,不再是单纯的计数。在实际工作中要谨慎使用权重,以符合业务需求为主哈。
如果英文比较好的人们,一眼就能看出这个参数的作用,直译成中文就是累积的意思。到这里又出现了一个小问题,很多人对“累积”和“累计”又傻傻分不清了,其实这两者还是很容易区分的,看下图特别直观:
是不是能直观区分“累积”和“累计”了?
那就继续探索cumulative参数吧,这个参数接收布尔值,默认为False,通过代码来看一下参数设置不同都有怎样的结果。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('cumulative默认False') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,cumulative=True) #累积直方图,展示累积分布 plt.title('cumulative=True');
左边时普通的直方图,右边时累积直方图,同样可以根据实际的业务需求来进行参数设置哦。
由于篇幅有限,对直方图函数的介绍就先到这里啦。细心的小伙伴可能发现了介绍参数的顺序就是按照函数官方文档中参数的顺序来的,没错,就是按照这个顺序进行的。但是参数中的第一个参数x却没有进行介绍,是这个参数没什么可介绍的嘛?当然不是,这个参数也是有些小细节需要注意的,具体的讲解留到下一篇文章和其他参数一起介绍啦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27