京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朋友小红在某公司做策划,前段时间高层打算引进一个大项目,需要他做一份详细的报告,作为决策层的依据。
雷厉风行的小红说干就干,然而,实际操作中才逐渐发现,公司购买的数据库,不仅乱、杂、多,还缺……
“策划改了几十遍,现在只要看到数据,就反射性想吐……”他抓狂的说。
千辛万苦做出了一版满意的,却被老板从头到尾diss了一番。如:方案太传统,严重缺乏互动性;视觉冲击力不够,没抓住大众需求;考虑的因素不够全面……最后一句话,重新做!
被全盘否定了劳动成果的小红,整天愁眉苦脸。在职场上春风如意的闺蜜小蓝,笑嘻嘻给小红提了个最中肯的建议,抽点时间学学Python吧。
——python 是个啥?
python是门动态的、面向对象的脚本语言,同时也是入门简单、通俗易懂的编程语言。
一段好的Python代码,阅读时就像在读一篇外语文章,这种特性称为“伪代码”,这种优势使学习者只用关心完成什么样的工作任务,而不必去纠结语言的命令语法。
python一段代码示例
另外,python在网络爬虫、办公自动化(报表处理、邮件处理、文件格式批量转换等)、数据分析、各种资源批量下载、自动化运营监控、软件和游戏开发、人工智能等领域都有突出表现。
这种计算机语言让困难的事情变得容易,除助力程序员外,亦可大幅提升普通人职业技能的实力,帮他们顺利过关斩将。
python犹如黑马般杀出重围,从容超越Java和Javascript,化身程序员必备的编程利器之一,且人气值迅速飙升,成为各行业各岗位从业人员所喜爱的职场技能。
目前,国内外许多公司都已使用Python,如:YouTube、豆瓣、知乎、Google、百度、腾讯、美团、阿里云等。
——为啥小红需要学python?
归根结底,小红工作中存在的困难如下:
python网络爬虫、数据清洗、数据可视化等显著的能力,可轻松搞定小红所有的难题。
网络爬虫,顾名思义就是用python写一段代码,让它像小蜘蛛一样,自动在互联网这张大蜘蛛网上爬行,去抓取自己的猎物(数据)。
python网络爬虫,对缺少数据却不知道如何获取的小红,可谓是雪中送炭!
众所周知,数据存在格式不同、异常值、缺失值等问题,是极为常见的。我们需要处理它们,这一步被称为“数据清洗”,是分析数据时比重最大的一部分,基本80%的工作都耗在这里。
利用可高效处理多维数据,且兼容性强的Python来进行数据清洗,能一举搞定多、杂、乱的数据,使小红的问题迎刃而解,并大幅降低时间成本。
这一环对于小红来说最重要,如何撰写画面精美、互动性强、一目了然的数据分析报告呢?
python可轻松将数据图形化,且能输出多样化的格式。同时,专攻统计可视化的模块,可与Pandas无缝对接,是收获老板和同事认可的法宝。
从爬取缺少的数据到给老板做汇报,应用python的各项功能,可节约主人公小红大部分耗时费力的工作,从而将更多时间、精力放于分析总结上!
——小蓝学python又收获了啥?
将Python用于工作中,不仅有前途,还有“钱”景,这也是小蓝建议小红学习的理由之一!
与Python相关的岗位薪酬普遍水平较高,基本在20K以上,而其中又以人才缺口巨大的机器学习和数据挖掘最高,年薪不低于30K。
资料来源 / ITPUB博客
虽然小蓝并非专业人士,只是将Python当作一项职场技能来学习,但是她学以致用,一个简单的操作,彻底改变了老板对她的看法。
她用python写了一个代码脚本,自动处理了大量Excel中的数据,给公司节约了时间和人工成本,从而收获了丰厚的奖金,并且涨薪30%。
——哪些人适合学python?
这样看来python是个好东西,可是我啥也不懂,能学不?答案是:YES!of cause!友好性和兼容性,决定了适合学习python群体的多样化。
✔ 零基础,对Python感兴趣
python可读性极佳,零基础的同学也可学习,只要感兴趣,有毅力,肯努力就行。
✔ 应届毕业生或在读高校生
对即将毕业或在读的大学生,学Python也是个不错的选择,因为年轻人学习和理解能力都很强,可更好地掌握知识点,对未来职业发展有极大帮助。
✔ 各行从业者或欲转行者
各行业的运维、营销、销售等从业者,都适合学习。工作中使用python往往能事半功倍,助推自己跻身业界佼佼者的行列。
✔ 从事开发领域的专业人员
机器语言相通之处甚多,对有编程经验的人来说,学习Python就再简单不过了,适合程度五颗星。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27