
朋友小红在某公司做策划,前段时间高层打算引进一个大项目,需要他做一份详细的报告,作为决策层的依据。
雷厉风行的小红说干就干,然而,实际操作中才逐渐发现,公司购买的数据库,不仅乱、杂、多,还缺……
“策划改了几十遍,现在只要看到数据,就反射性想吐……”他抓狂的说。
千辛万苦做出了一版满意的,却被老板从头到尾diss了一番。如:方案太传统,严重缺乏互动性;视觉冲击力不够,没抓住大众需求;考虑的因素不够全面……最后一句话,重新做!
被全盘否定了劳动成果的小红,整天愁眉苦脸。在职场上春风如意的闺蜜小蓝,笑嘻嘻给小红提了个最中肯的建议,抽点时间学学Python吧。
——python 是个啥?
python是门动态的、面向对象的脚本语言,同时也是入门简单、通俗易懂的编程语言。
一段好的Python代码,阅读时就像在读一篇外语文章,这种特性称为“伪代码”,这种优势使学习者只用关心完成什么样的工作任务,而不必去纠结语言的命令语法。
python一段代码示例
另外,python在网络爬虫、办公自动化(报表处理、邮件处理、文件格式批量转换等)、数据分析、各种资源批量下载、自动化运营监控、软件和游戏开发、人工智能等领域都有突出表现。
这种计算机语言让困难的事情变得容易,除助力程序员外,亦可大幅提升普通人职业技能的实力,帮他们顺利过关斩将。
python犹如黑马般杀出重围,从容超越Java和Javascript,化身程序员必备的编程利器之一,且人气值迅速飙升,成为各行业各岗位从业人员所喜爱的职场技能。
目前,国内外许多公司都已使用Python,如:YouTube、豆瓣、知乎、Google、百度、腾讯、美团、阿里云等。
——为啥小红需要学python?
归根结底,小红工作中存在的困难如下:
python网络爬虫、数据清洗、数据可视化等显著的能力,可轻松搞定小红所有的难题。
网络爬虫,顾名思义就是用python写一段代码,让它像小蜘蛛一样,自动在互联网这张大蜘蛛网上爬行,去抓取自己的猎物(数据)。
python网络爬虫,对缺少数据却不知道如何获取的小红,可谓是雪中送炭!
众所周知,数据存在格式不同、异常值、缺失值等问题,是极为常见的。我们需要处理它们,这一步被称为“数据清洗”,是分析数据时比重最大的一部分,基本80%的工作都耗在这里。
利用可高效处理多维数据,且兼容性强的Python来进行数据清洗,能一举搞定多、杂、乱的数据,使小红的问题迎刃而解,并大幅降低时间成本。
这一环对于小红来说最重要,如何撰写画面精美、互动性强、一目了然的数据分析报告呢?
python可轻松将数据图形化,且能输出多样化的格式。同时,专攻统计可视化的模块,可与Pandas无缝对接,是收获老板和同事认可的法宝。
从爬取缺少的数据到给老板做汇报,应用python的各项功能,可节约主人公小红大部分耗时费力的工作,从而将更多时间、精力放于分析总结上!
——小蓝学python又收获了啥?
将Python用于工作中,不仅有前途,还有“钱”景,这也是小蓝建议小红学习的理由之一!
与Python相关的岗位薪酬普遍水平较高,基本在20K以上,而其中又以人才缺口巨大的机器学习和数据挖掘最高,年薪不低于30K。
资料来源 / ITPUB博客
虽然小蓝并非专业人士,只是将Python当作一项职场技能来学习,但是她学以致用,一个简单的操作,彻底改变了老板对她的看法。
她用python写了一个代码脚本,自动处理了大量Excel中的数据,给公司节约了时间和人工成本,从而收获了丰厚的奖金,并且涨薪30%。
——哪些人适合学python?
这样看来python是个好东西,可是我啥也不懂,能学不?答案是:YES!of cause!友好性和兼容性,决定了适合学习python群体的多样化。
✔ 零基础,对Python感兴趣
python可读性极佳,零基础的同学也可学习,只要感兴趣,有毅力,肯努力就行。
✔ 应届毕业生或在读高校生
对即将毕业或在读的大学生,学Python也是个不错的选择,因为年轻人学习和理解能力都很强,可更好地掌握知识点,对未来职业发展有极大帮助。
✔ 各行从业者或欲转行者
各行业的运维、营销、销售等从业者,都适合学习。工作中使用python往往能事半功倍,助推自己跻身业界佼佼者的行列。
✔ 从事开发领域的专业人员
机器语言相通之处甚多,对有编程经验的人来说,学习Python就再简单不过了,适合程度五颗星。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14