
相信接触过Excel的小伙伴都知道,Excel有一个非常强大的功能“数据透视表”,使用数据透视表可以自由选择不同字段,用不同的聚合函数进行汇总,并建立交叉表格,用以从不同层面观察数据。这么强大的功能,在Python中怎么去实现呢?
不用担心,Python的"数据分析小能手"Pandas很贴心地为我们提供了一个快速实现数据透视表功能的方法——pivot_table()。事不宜迟,让我们赶紧看看如何在Python中实现数据透视表!
为帮助大家更好地理解,在讲解如何使用pivot_table( )实现透视表前,我们先导入示例数据,在接下来的讲解中都使用此数据作为例子。
# 导入示例数据 <<< data =pd.read_csv("data.csv") <<< data.head() 月份 项目 部门 金额 剩余金额 0 1月 水费 市场部 1962.37 8210.58 1 2月 水费 市场部 690.69 9510.60 2 2月 电费 市场部 2310.12 5384.92 3 2月 电费 运营部 -1962.37 7973.10 4 2月 电费 开发部 1322.33 6572.16
下面我将带大家使用pivot_table( )一步一步实现数据透视表的操作。
首先,原数据有5个字段,我们在做数据透视表之前必须理解每个字段的意思,明确清楚自己需要得到什么信息。
假设我们想看看不同月份所花费的水电费金额是多少,这时我们需要把字段“月份”设置为索引,将字段“金额”设置为我们需要看的值,具体代码如下:
<<< data.pivot_table(index=['月份'],values=['金额']) 金额 月份 10月 3723.940000 11月 2900.151667 12月 10768.262857 1月 1962.370000 2月 1432.280000 3月 3212.106667 4月 4019.175000 5月 4051.480000 6月 6682.632500 7月 11336.463333 8月 17523.485000 9月 10431.960000
参数index为设置的索引列表,即分组依据,需要用中括号[ ]将索引字段括起来;参数values为分组后进行计算的字段列表,也需要用中括号[ ]括起来。这两个参数的值可以是一个或多个字段,即按照多个字段进行分组和对多个字段进行计算汇总。例如,设置index=['项目','部门']代表求不同项目不同部门下的金额。
<<< data.pivot_table(index=['项目','部门'],values=['金额']) 金额 项目 部门 水费 市场部 3614.318125 开发部 2358.205000 运营部 5896.213333 电费 市场部 6094.748235 开发部 1322.330000 运营部 7288.615000 采暖费 市场部 5068.380000 运营部 55978.000000
若设置values=['金额','剩余金额'],即求不同项目不同部门下金额和剩余金额的值。
<<< data.pivot_table(index=['项目','部门'],values=['金额','剩余金额']) 剩余金额 金额 项目 部门 水费 市场部 7478.423125 3614.318125 开发部 6866.490000 2358.205000 运营部 7224.033333 5896.213333 电费 市场部 7645.535882 6094.748235 开发部 6572.160000 1322.330000 运营部 8821.895000 7288.615000 采暖费 市场部 6572.030000 5068.380000 运营部 7908.560000 55978.000000
同时,如果我们想以交叉表的形式查看不同项目和不同部门下的消费金额,这时就要将字段‘部门’设置为列名,进行交叉查看,具体代码如下:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额']) 金额 部门 市场部 开发部 运营部 项目 水费 3614.318125 2358.205 5896.213333 电费 6094.748235 1322.330 7288.615000 采暖费 5068.380000 NaN 55978.000000
通过上面的示例,我们可以看到某个分组下不存在记录会被标记为NAN,例如上述中采暖部和开发部不存在金额这一字段的记录,则会标记为NAN。如果不希望被标记为NAN,我们可以通过设置参数fill_value=0来用数值0替代这部分的缺失值。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0) 金额 部门 市场部 开发部 运营部 项目 水费 3614.318125 2358.205 5896.213333 电费 6094.748235 1322.330 7288.615000 采暖费 5068.380000 0.000 55978.000000
在上面的示例中,我们都是默认分组后对值进行求平均值计算,假如我们想查看不同项目不同部门下金额的总和该怎么实现呢?
通过设置参数aggfunc=np.sum即可对分组后的值进行求和操作,参数aggfunc代表分组后值的汇总方式,可传入numpy库中的聚合方法。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=np.sum) 金额 部门 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 电费 103610.72 1322.33 29154.46 采暖费 5068.38 0.00 55978.00
除了常见的求和、求平均值这两种聚合方法,我们还可能接触到以下这几种:
描述方法标准差np.std()方差np.var()所有元素相乘np.prod()中数np.median()幂运算np.power()开方np.sqrt()最小值np.min()最大值np.max()以e为底的指数np.exp(10)对数np.log(10)
与前面介绍的参数index,columns,value一样,参数aggfunc传入的值也是一个列表,表示可传入一个或多个值。当传入多个值时,表示对该值进行多种汇总方式,例如同时求不同项目不同部门下金额的求和值和平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=[np.sum,np.max]) sum amax 金额 金额 部门 市场部 开发部 运营部 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 16807.58 2941.28 6273.56 电费 103610.72 1322.33 29154.46 18239.39 1322.33 26266.60 采暖费 5068.38 0.00 55978.00 5068.38 0.00 55978.00
同时,如果我们想对不同字段进行不同的汇总方式,可通过对参数aggfunc传入字典来实现,例如我们可以同时对不同项目不同部门下,对字段金额求总和值,对字段剩余金额求平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max}) 剩余金额 金额 部门 市场部 开发部 运营部 市场部 开发部 运营部 项目 水费 9510.60 8719.34 7810.38 57829.09 4716.41 17688.64 电费 9625.27 6572.16 9938.82 103610.72 1322.33 29154.46 采暖费 6572.03 0.00 7908.56 5068.38 0.00 55978.00
另外,在进行以上功能的同时,pivot_table还为我们提供了一个求所有行及所有列对应合计值的参数margins,当设置参数margins=True时,会在输出结果的最后添加一行'All',表示根据columns进行分组后每一项的列总计值;以及在输出结果的最后添加一列'All',表示根据index进行分组后每一项的行总计值。
<<< pd.set_option('precision',0) <<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max},margins=True) 剩余金额 金额 部门 市场部 开发部 运营部 All 市场部 开发部 运营部 All 项目 水费 9511 8719 7810 9511 57829 4716 17689 80234 电费 9625 6572 9939 9939 103611 1322 29154 134088 采暖费 6572 0 7909 7909 5068 0 55978 61046 All 9625 8719 9939 9939 166508 6039 102821 275368
上面详细介绍了如何在python中通过pivot_table( )方法实现数据透视表的功能,那么,与数据透视表原理相同,显示方式不同的‘数据透视图’又该怎么实现呢?
实现方法非常简单,将上述进行pivot_table操作后的对象进行实例化,再对实例化后的对象进行plot绘图操作即可,具体代码如下:
<<< df=data.pivot_table(index=['项目'],columns=['部门'],values='金额',fill_value=0) <<< df.plot(kind='bar')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28