京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Q:偏态分布和率的置信区间怎么估计,如下图划红线一栏
A:置信区间越来越重要,正态的容易,那么偏态和率的95CI置信区间怎么估计呢?本公众号分别写两个各自的方法。不妨你来学习下就好:
小技巧!如何用SPSS计算率的置信区间
《新英格兰医学杂志》论文统计解读:秩和检验时,如何计算中位数差值的置信区间
--置信区间估计--
Q:偏态分布的计量资料,如何在三线表描述
A:一般情况下,正态分布采用均数±标准差,偏态分布则用中位数和四分卫间距来表达。有两种形式,一种是M(IQR),另外一种则是M(P25,P75)。详细解读可见公众号先前文章:
当正态、偏态、率的数据狭路相逢,如何绘制规范医学论文表格
--定量数据统计分析策略--
Q:请问各位老师,如果多重线性回归时自变量与因变量不满足线性关系该怎么办。
A:线性回归中,自变量与因变量的线性关系十分重要。如果线性关系不成立,有两种方法结局,第一,将自变量转为有序分类变量,并进行哑变量设置分析,第二,对自变量进行转换比如log转换,或者自变量指数变换,让线性关系成立。
--观察性研究统计分析策略--
Q:重复测量资料碰到结局是偏态分布时,无法采用重复测量方差分析,应该采用什么方法
A:无论如何,其实我不推荐重复测量方差分析,这种方法局限性太多,无法应对缺失值、无法应对偏态分布、要求测量时间间隔等距,更重要的是,它往往被大家误用。偏态分布资料,我建议使用广义估计方程来做,如果对统计有兴趣的朋友可以试试线性混合模型或者广义线性混合模型,这是好方法。
--临床试验研究统计分析策略--
Q:治疗前数据为正态分布,治疗后为非正态分布,怎么比较治疗前后的大小?用非参数检验吧?
A:治疗前后的数据比较不是看治疗前后本身,而是看差值,可以想计算差值,看差值的正态性如何?如果差值差不多正态或者近似正态,可以用配对t检验,严重偏态分布或者存在着极大或极小值,采用符合秩和,也就是配对秩和检验。
--定量数据统计分析策略---
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12