
在考虑变量之间的关系时,我们通常摘要变量之间的相关程度。对于数值型变量,通常计算相关系数和进行回归分析,而对于定类型变量则通常采用列联表过程进行分析。列联表给出了多个变量在不同取值下的数据分布,从而可摘要变量之间的相互关系。
1.常用于研究离散变量的名义变量和有序变量有无相关。
2.调用列联表分析过程可进行计数资料和某些等级资料的列联表分析。
3.在分析中,可以对二维和多维列联表(RC表)资料进行统计描述和x检验,并计算相应的百分数指标。
4.可以计算四格表的确切概率(Fisher’s 精确 Test)且有单双侧(One-Tail 和 Two-Tail)、对数似然比检验(Likelihood Ratio)以及线性关系的Mantel-Haenszel x检验。
1.打开数据文件
选择“分析”—“统计描述”—“交叉表格”,弹出交叉表格对话框。部分项的含义如下:
2.单击【精确】按钮
弹出“精确检验”对话框。部分项的含义如下:
3.单击【Statistics】按钮
弹出“交叉表格:统计”对话框,该对话框是用来选择统计分析量。部分项的含义如下:
4.单击【单元格】按钮
弹出“交叉表格:单元格显示”对话框,设置单元格显示内容。部分项含义如下:
(一)计数复选框
(二)百分比复选框误
(三)z-检验
5.单击【格式】按钮
弹出“交叉表:表格格式”对话框,可以选择按行变量值的升序或降序来排列行。
01.操作步骤
(1)打开“data3.sav”数据文件,选择“分析”—“描述统计”—“交叉表格”,弹出“交叉表格”对话框。
(2)在左侧的变量列表中选中“性别”变量,单击【选入】按钮,将其选入“行变量列表”;选中“工作满意度”变量,单击【选入】按钮,将其选入“列变量列表”,并勾选“显示集群条形图”。
(3)单击【精确】按钮,弹出“精确检验”对话框,勾选“仅渐进法”选项。单击【继续】按钮返回主对话框。
(4)单击【Statistics】按钮。弹出“交叉表格:统计”对话框,勾选“卡方”复选框,单击【继续】返回主对话框。
(5)单击【单元格】按钮,弹出“交叉表格:单元格显示”对话框,勾选“观察值”复选框、“期望值”复选框、“行”复选框、“列”复选框和“四舍五入单元格计数”选项,单击【继续】按钮返回主对话框。
(6)单击【格式】按钮,弹出“交叉表:表格格式”对话框。勾选“升序”选项。单击【继续】按钮返回主对话框。
(7)完成所有设置后,单击【确定】按钮执行命令。
02.输出结果
(1)个案处理值摘要
(2)性别*工作满意度交叉列表
(3)卡方测试
(4)工作满意度条形图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13