
作者 | 石秀峰
导读:主数据(Master Data)是具有共享性的基础数据,可以在企业内跨越各个业务部门被重复使用的,因此通常长期存在且应用于多个系统。由于主数据是企业基准数据,数据来源单一、准确、权威,具有较高的业务价值,因此是企业执行业务操作和决策分析的数据标准。
不论是大数据还是小数据,持续地提升数据质量才是企业数据治理之道!
▌主数据具备3个主要特征
①高价值:主数据是所有业务处理都离不开的实体数据,与大数据相比价值密度非常高。
②高共享:主数据是跨部门、跨系统高度共享的数据。
③相对稳定:与交易数据相比主数据是相对稳定的,变化频率较低。变化频率较低并不意味着一成不变,例如:客商更名会引起客商主数据的变动、人员调动会引起人员主数据的变动等等。
▌主数据的4个超越:即超越业务,超越部门、超越系统、超越技术。
①超越业务,主数据是跨越了业务界限,在多个业务领域中被广泛使用的数据,其核心属性也是来自业务。例如:物料主数据,它有自身的自然属性,如:规格、材质,也有业务赋予的核心属性,如:设计参数、工艺参数、采购、库存要求、计量要求、财务要求等。同时,主数据也要服务于业务,可谓是———从业务中来到业务中去。
②超越部门,主数据是组织范围内共享的、跨部门的数据,不归属某一特定的部门,是企业的核心数据资产。
③超越系统,主数据是多个系统之间的共享数据,是应用系统建设的基础,同时也是数据分析系统重要的分析对象。
④超越技术,主数据是要解决不同异构系统之间的核心数据共享问题,从来不会局限于一种特定的技术。在不同环境、不同场景下,主数据的技术是可以灵活应对的。主数据的集成架构是多样的,如:总线型结构、星型结构、端到端结构;集成技术也是多样的,如:webservice、REST、ETL、MQ、kafka等;不论是架构还是技术,没有最好的只有更合适的。企业在做技术选型的时候,要充分考虑企业的核心业务需求和未来的发展要求去构建自身的主数据技术体系。
▌企业主数据管理的常见问题
一、主数据的问题80%是管理问题
很多企业的信息部门都很困惑,主数据管理工作就是典型的钱少、活多、看不见效果、领导不重视、还经常挨领导骂,干的很苦逼。岂不知,主数据的问题80%都是管理问题。高层领导不关注、没有专业的主数据管理团队、没有规范的主数据管理制度和流程,数据标准和技术标准缺失、数据管理重视程度不足,数据维护随意无检查机制、没有定期的数据质量检验和清洗 ……,这都是造成主数据质量不高的重要因素。主数据是超越业务、超越部门的数据,要想将主数据做好,需要各层级领导足够重视、全员参与,同时,构筑起主数据管理的基础能力,包括:组织、流程、 标准和工具。
在主数据管理基础能力中,组织、流程、 标准的建设80%决定了主数据项目的成败和建设效果。
二、主数据实施80%靠企业自身
企业在实施主数据项目的时候,都希望找到最专业的主数据团队、最强大的主数据产品。但是聘请同样的团队,采用同样的产品,有的企业的建设效果明显,有的企业建设效果却差强人意,这是为什么?存在这种情况,很多一部分原因是企业太过依赖于外部力量,而对内部能力建设重视不足。
主数据建设是一个持续运营、不断优化的过程,依靠外部资源,不能保证主数据质量的持续优化。没有相应的组织体系、制度文化和技术体系支撑,将严重影响主数据项目的建设效果。同时,数据的整理、清洗、编码等工作,都是必需要企业自己来做的,外部资源能支持更多的是经验和方法。
所以,打铁还需自身硬,企业自身需要具备数据思维,领导要对主数据管理足够重视,建设起自身的主数据管理能力。同时,借鉴外部先进的方法、技术和经验,是项目成功的重要保障。这就是我的第二个观点,主数据管理80%靠企业自身。
三、主数据效果80%靠运营
客户常常困惑“我的钱也花了,管理体系也建立了,项目也算实施成功了,可为什么还是见不到效果”。存在这种疑惑很正常,原因有两个方面:一方面,主数据从本身特性和应用架构上是偏底层的,与分析型数据不同,主数据可视化能力弱,它是服务于数据分析,却常常被忽视。另一方面,主数据主数据管理工作是一个需要持续迭代、持续运营的过程,主数据价值会在运营过程中慢慢体现出来。主数据管理切勿追求一步都到位,应该循序渐进、持续提升。
主数据项目的实施能够帮助企业初步建立起主数据的管理体系,包括:管理组织、制度和流程、数据标准、技术规范以及初始的主数据代码库等。但做好持续的运营工作,是发挥主数据价值的关键。有些项目实施过程很成功,但系统运行一段时间,比如半年、一年后,突然发现,主数据的质量已经回到了“解放前”。出现这种情况的主要原因是主数据管理相关制度和标准没有贯彻到位,没有定期进行数据质量检查和清洗。所以,实施主数据项目,只是数据治理的一个开始,企业要保持高质量的数据,必须持续的运营和不断的优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28