
作者 | 石秀峰
导读:主数据(Master Data)是具有共享性的基础数据,可以在企业内跨越各个业务部门被重复使用的,因此通常长期存在且应用于多个系统。由于主数据是企业基准数据,数据来源单一、准确、权威,具有较高的业务价值,因此是企业执行业务操作和决策分析的数据标准。
不论是大数据还是小数据,持续地提升数据质量才是企业数据治理之道!
▌主数据具备3个主要特征
①高价值:主数据是所有业务处理都离不开的实体数据,与大数据相比价值密度非常高。
②高共享:主数据是跨部门、跨系统高度共享的数据。
③相对稳定:与交易数据相比主数据是相对稳定的,变化频率较低。变化频率较低并不意味着一成不变,例如:客商更名会引起客商主数据的变动、人员调动会引起人员主数据的变动等等。
▌主数据的4个超越:即超越业务,超越部门、超越系统、超越技术。
①超越业务,主数据是跨越了业务界限,在多个业务领域中被广泛使用的数据,其核心属性也是来自业务。例如:物料主数据,它有自身的自然属性,如:规格、材质,也有业务赋予的核心属性,如:设计参数、工艺参数、采购、库存要求、计量要求、财务要求等。同时,主数据也要服务于业务,可谓是———从业务中来到业务中去。
②超越部门,主数据是组织范围内共享的、跨部门的数据,不归属某一特定的部门,是企业的核心数据资产。
③超越系统,主数据是多个系统之间的共享数据,是应用系统建设的基础,同时也是数据分析系统重要的分析对象。
④超越技术,主数据是要解决不同异构系统之间的核心数据共享问题,从来不会局限于一种特定的技术。在不同环境、不同场景下,主数据的技术是可以灵活应对的。主数据的集成架构是多样的,如:总线型结构、星型结构、端到端结构;集成技术也是多样的,如:webservice、REST、ETL、MQ、kafka等;不论是架构还是技术,没有最好的只有更合适的。企业在做技术选型的时候,要充分考虑企业的核心业务需求和未来的发展要求去构建自身的主数据技术体系。
▌企业主数据管理的常见问题
一、主数据的问题80%是管理问题
很多企业的信息部门都很困惑,主数据管理工作就是典型的钱少、活多、看不见效果、领导不重视、还经常挨领导骂,干的很苦逼。岂不知,主数据的问题80%都是管理问题。高层领导不关注、没有专业的主数据管理团队、没有规范的主数据管理制度和流程,数据标准和技术标准缺失、数据管理重视程度不足,数据维护随意无检查机制、没有定期的数据质量检验和清洗 ……,这都是造成主数据质量不高的重要因素。主数据是超越业务、超越部门的数据,要想将主数据做好,需要各层级领导足够重视、全员参与,同时,构筑起主数据管理的基础能力,包括:组织、流程、 标准和工具。
在主数据管理基础能力中,组织、流程、 标准的建设80%决定了主数据项目的成败和建设效果。
二、主数据实施80%靠企业自身
企业在实施主数据项目的时候,都希望找到最专业的主数据团队、最强大的主数据产品。但是聘请同样的团队,采用同样的产品,有的企业的建设效果明显,有的企业建设效果却差强人意,这是为什么?存在这种情况,很多一部分原因是企业太过依赖于外部力量,而对内部能力建设重视不足。
主数据建设是一个持续运营、不断优化的过程,依靠外部资源,不能保证主数据质量的持续优化。没有相应的组织体系、制度文化和技术体系支撑,将严重影响主数据项目的建设效果。同时,数据的整理、清洗、编码等工作,都是必需要企业自己来做的,外部资源能支持更多的是经验和方法。
所以,打铁还需自身硬,企业自身需要具备数据思维,领导要对主数据管理足够重视,建设起自身的主数据管理能力。同时,借鉴外部先进的方法、技术和经验,是项目成功的重要保障。这就是我的第二个观点,主数据管理80%靠企业自身。
三、主数据效果80%靠运营
客户常常困惑“我的钱也花了,管理体系也建立了,项目也算实施成功了,可为什么还是见不到效果”。存在这种疑惑很正常,原因有两个方面:一方面,主数据从本身特性和应用架构上是偏底层的,与分析型数据不同,主数据可视化能力弱,它是服务于数据分析,却常常被忽视。另一方面,主数据主数据管理工作是一个需要持续迭代、持续运营的过程,主数据价值会在运营过程中慢慢体现出来。主数据管理切勿追求一步都到位,应该循序渐进、持续提升。
主数据项目的实施能够帮助企业初步建立起主数据的管理体系,包括:管理组织、制度和流程、数据标准、技术规范以及初始的主数据代码库等。但做好持续的运营工作,是发挥主数据价值的关键。有些项目实施过程很成功,但系统运行一段时间,比如半年、一年后,突然发现,主数据的质量已经回到了“解放前”。出现这种情况的主要原因是主数据管理相关制度和标准没有贯彻到位,没有定期进行数据质量检查和清洗。所以,实施主数据项目,只是数据治理的一个开始,企业要保持高质量的数据,必须持续的运营和不断的优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14