
来源 | 接地气学堂
做数据分析的同学们都遇到过这个问题:从多维度分析问题,提出对业务有意义的建议。这个题目看起来很简单,可很多同学辛辛苦苦跑了一堆报表,结果只落得业务一堆抱怨:
好!冤!枉!
明明出了那么多组数据,为什么还被说“分析维度不够多?”今天我们系统解答一下。问题的本质是:业务口中的“多维度”,完全不是你想的那个“多维度”。
对数据分析师而言,多维度,往往指的是数据指标的拆分维度。举个简单的例子:3月份销售额3个亿。这就是一个指标,没有拆分维度。如果加了分类维度,就是下边的效果:
注意:比起只看总数,用多维度拆解数据,是能更精确的定位数据的。常见的方法有两种:一、添加过程指标;二、按业务管理方式添加分类维度。比如只看总销售金额,我们发现差3000万达标,可我们并不知道为什么不达标。这时候如果拆解细一点,比如:
1、添加分类维度:看到哪个业务线没做好(如下图)
2、添加过程指标:看到从用户意向到付费,哪个环节出了问题(如下图)
增加过程指标+分类维度,就能更精准的定位问题。甚至一些简单的结论已经呼之欲出了。正因如此,很多数据分析师把业务口中的“多维度”,直接理解成了“维度多”。一听到要做分析,振臂高呼“拆!拆!拆!”层层叠叠做了一大堆交叉表,把各个分类维度的数据都做了出来(如下图)。
然而,仅仅“多”,就足够了吗?
业务口中的“多维度”,完全不是这个意思。业务脑子里装的是不是数据库里的表结构,而是一个个具体的问题。当业务看到“3月份销售没有达标”脑子里想的多维度是这样的:
是不是看傻眼了。
你会发现,单纯的拆解数据根本无法回答上边的问题。是滴,一个都回答不了。甚至单靠看数据都没法回答这些问题。即使把问题定位到:“3月业绩不达标是因为A大区3个分公司的客户意向签约太少”,定位到这么细的程度,也不能回答上边的问题。因为到底意向太少,是因为对手发力了、产品没做好、活动没跟上、用户需求有变化……还是没解释清。具体的业务问题,一个都没有回答。自然业务看了一脸懵逼了。
从本质上看,真正的多维度分析,其实考的不是数据计算能力,而是策略能力。具体来说是三个方面:
注意,这三件事是有顺序的。先把数据论证方式列清楚,避免大家放空炮(数据不能论证的理由就闭嘴,是个非常好的议事规则)。之后先堵借口,找借口并不能解决问题,因此先把各种逃跑路线堵上。最后再集中想办法,想办法的时候,从大到小,从粗到细,先搞大问题。综上,这个事可以分六步做。
▌第一步,要先对业务明里、暗里提出的说法做分类。
对每一类问题,构建分析假设,把业务理由转化为数据逻辑,拿数据说话(如下图)。
▌第二步,优先排除借口。
让大家把精力集中在。往往借口产生于:宏观因素、外部因素、队友因素。所以在这里,关键是证伪。只要能推翻他们的逃跑借口就行。证伪最好用的办法就是举例法,同样是下雨,为什么别人就抗的住。同样是流量难搞,为啥别的业务线能持续增长?(如下图)。
举例法还有个好处,就是在反驳借口的同时,也指出了解决问题的出路。业务最讨厌光讲问题不讲方法的人,因为喷人人人都会,解决问题可就难了。给出具体的学习对象,可以极大的激发业务思考对策,从而达到双赢的效果。
▌第三步,解决白犀牛,剔除明显的重大影响。
比如监管政策、公司战略、重大外部环境等等因素,确实会对企业经营起到重大作用,并且这些因素是普通小员工只能接受,不能改变的。但是!这种重大因素表现在数据上,有严格的要求(如下图)。
因此如果有人想推脱给这些因素,要看:
以此敲警钟:不要事事都怪大环境不好。你丫走到哪里都是大环境不好,你是影响大环境的人呐!先排除这种大因素的影响(或干扰)再聚焦看我们能做什么事情。
▌第四步,解决黑天鹅,剔除明显突发事件。
如果发生的真是突发事件,很容易找到问题源头
因此先排除单次突发问题,找清楚一点原因以后,再追溯之前的情况,就容易说清楚。
▌第五步:按分工锁定问题点再谈细节。
解决了大问题以后,想讨论更细节的问题就得锁定部门,先定人再谈计划。之前已有分享,这里就不赘述了。
▌第六步:锁定细节问题。
请注意,即使聚焦到一个部门的一个行动,还是很难扯清楚:到底是什么业务上原因导致的问题。因为本身业务上的事就是各种因素相互交织很难扯清,比如:
可能做数据的同学本能反应是:能做ABtest呀。实际上大部分业务是没有时间、空间做ABtest 的,而且有些东西(比如选品、文案)影响维度太多,得做无数组ABtest才能测清楚。而且对已经发生的事,也没法再做ABtest了。所以想区分相互交织的因素,还得有更多辅助方法配合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15