
作者 | Michael Barnard编译 | CDA数据分析师
海平面上升是一个受到广泛研究的现象,这是全球变暖造成的。首先,额外的热量使陆地冰融化。然后,水变暖,因此膨胀了一点。这种结合意味着随着未来几年全球变暖,海平面上升将加速。到2050年,我们非常有信心看到20-30厘米(8-12英寸)的海平面上升。2100的前景变化更大,因为它为我们提供了更多缓解变暖的空间,并且为发生问题提供了更多空间,但是介质大约为一米(39英寸)。
我们认为我们有一个很好的主意,这意味着什么,因为大多数人都认为沿线的海拔高度已被很好地理解。太糟糕了,实际上并非如此。
一项研究于2019年10月29日发表在《自然通讯》上,这是一本自然科学期刊,影响力非常可靠,达到11.88,已大大改善了现有技术水平。这项研究是Scott A. Kulp和Benjamin H. Strauss 对全球海拔高度易受海平面上升和沿海洪灾影响的三倍估计。是的,不幸的是,更高的准确性带来了更高的风险。
要了解研究做了什么,知道海拔是如何衡量和沟通是很重要的。有许多数字高程模型(DEM),它们为世界各地的研究人员,政策制定者等提供高程。在富裕国家的许多城市地区,通过飞机和越来越多的无人机进行的激光雷达飞越飞行,可以非常准确地测量高程。在美国,大部分沿海地区都由激光雷达很好地绘制了地图。但是,这是一个昂贵的方法来确定高程。世界上大多数海拔从评估美国宇航局的航天飞机雷达地形测绘任务(SRTM)。这是在2000年捕获的,从那时起某些人和研究人员可以使用全分辨率,但是到2014年美国白宫宣布它对所有人公开可用时,所有人都可以使用全分辨率。
SRTM数据集有什么问题?好吧,在许多叶子或建筑物茂密的地方,它从叶子或建筑物的顶部抠出,而不是从地面上掉下来。是的,在很多地方,富裕市区以外的所有人使用的SRTM数据高估了海拔。在面临海平面上升的沿海地区,这是很大的事情。对于世界大多数地区以及美国许多地区,极端沿海水位(ECWL)暴露分析都是以SRTM数据为基础的。ECWL是关于容易发生常规洪水的地区,而不是低于该地区平均海平面的地区。
Kulp和Strauss所做的就是定义并执行一种方法来调整沿海地区的SRTM数据,以尽可能地固定数据以使其与实际海拔高度对齐。
这就是机器学习的用武之地。他们将SRTM数据作为输入,将其输入到多层感知器(MLP)人工神经网络中,并使用美国激光雷达数据用于特定区域,以训练它如何将SRTM高度调整为实际高度。然后,他们在美国和澳大利亚的多个地区测试了结果,以验证结果模型是否过拟合。我们将得到结果,随着您对研究的深入阅读,结果会越来越差,但这是有关在清洁技术和气候解决方案中使用机器学习的系列文章之一,因此我们将花一些时间时间取决于神经网络方法本身。
多层感知器神经网络具有一些特征。它具有输入层,在这种情况下为SRTM中的NASA高程数据。它具有一个输出层,即新的高程图。它具有作为神经网络的一个或多个隐藏层,这些隐层获取可用数据的每个块,对其施加神经网络权重,并提供输出。针对大样本量的激光雷达数据对输出进行了高度准确的测试,以便训练模型以校正SRTM数据,使其与可用的激光雷达数据对齐。
输入层不仅比图片还复杂。研究人员从各种数据集中获得了目标位置已知属性的23维向量。这些变量包括ICESat提供的邻里海拔值,土地坡度,人口密度,植被密度,冠层高度以及与冰雪覆盖的局部SRTM偏差。他们在这23个变量的5100万个样本上训练了该模型。输出层很简单,实际上只是该位置的SRTM错误的预测。
值得在该位置戳一下。2014年之前,大多数SRTM发布的数据的分辨率约为90米(295英尺)。最新的可用数据,例如2000年高分辨率GPS的解锁,分辨率更高,约30米(98英尺)。但是,许多其他数据集的分辨率差别很大。例如,人口数据的规模为一千米(0.62英里),但即使有所不同。许多数据管理用于对齐23个输入变量。由于存在分辨率差异,它们的输出分辨率约为90米(295英尺),类似于2014年前的SRTM数据。
与所有神经网络一样,几乎没有办法知道它们在神经网络内部的作用。我们真正能做的就是比较输出的准确性以达到置信度。
所得的数据集CoastalDEM比SRTM准确得多,尤其是在水边。在美国,海拔1-20米(3.3-65.6英尺)的平均SRTM误差为3.7米(12英尺)。在澳大利亚,高度为2.5米(8.2英尺)。在全球范围内,分辨率较低的ICESat约为1.9米(6.2英尺)。在针对美国沿海城市进行测试时,CoastalDEM可以将误差从4.7米(15.5英尺)降低到小于0.06 m(2.4英寸)。请记住,对于富裕国家的城市来说,极端沿海水位(ECWL)暴露分析已被激光雷达数据所限制,因此这并不意味着纽约将更快地进入水下。
但这确实意味着世界上许多其他城市也将成为。而且,许多没有用激光雷达绘制的海岸线早就面临更大的麻烦。
让我们看看佛罗里达州南部。这是到2050年海平面上升风险的传统模型。
看起来很合理。但是,让我们看一下使用CoastalDem更新的调整后的地图。
哎呀。多了很多红色。对于佛罗里达州南部来说,那红色非常糟糕。请注意,这里不是很多人的聚集地,而是一个好消息,但是它覆盖了许多大沼泽地,它们过滤了流入比斯坎含水层的水,为佛罗里达州南部的淡水供应补充了水。
让我们向南看,在Key West及其附近的钥匙。
佛罗里达礁岛礁最高海拔为1.8米(6英尺)。到2050年,Keys的大部分地区,特别是最南端的地区,将被定期淹没。由于沿海平原的人口密度大,美国极端沿海水位(ECWL)风险评估中的大多数错误都在佛罗里达州。
但是美国并不是影响最大的地方。除其他外,美国所有城市都已经在使用精确的激光雷达数据进行ECWL评估。问题在于人口稠密的外国城市。
较深的品红色仅来自CoastalDEM的预测。浅紫色是SRTM和CoastalDEM都在做出的预测。黄色斑点是SRTM在另一个方向上出错的区域,CoastalDEM认为没有威胁。
珠江三角洲有4200万人。孟加拉国总人口1.64亿,在气候变化加剧的2017年季风中洪水泛滥,使该国三分之一的人口泛滥,使4100万人流离失所。
借助新的CoastalDEM,基于机器学习的对沿海极端水位风险暴露的预测要高得多。传统模型显示,到2050年,将有2.5亿人处于危险之中。有了CoastalDEM,又有1亿人处于危险之中。到2100年,将有6.3亿人遭受潮汐的定期洪水袭击。
就像到目前为止该系列中的其他文章所强调的那样,机器学习正在帮助我们快速规划和估算商业太阳能,发现植树的机会以减轻变化并维持我们使用的水的纯度。并且,当然,可以用单手机器人解决Rubik的立方体。但是,如本案例研究所示,这也阐明了我们面临的气候变化风险等级。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15