
作者 | 李梅花
来源 | 玩转数据分析
大家有没有特别羡慕加害怕过这种人,他能一眼看出你做的PPT里面的数据异常,随时能提出一个数据证明你的小结论有问题,然后以你一个数据问题迅速推翻你整个报告的结论,结果就是你做了整整一个月的分析,全毁了,从头再来。
这种人一般数据敏感度极高,逻辑性极强,且对你的汇报有生杀大权。每次被挑战的时候,你是不是特别想提升自己的数据敏感度,从此只有你挑战别人,没有能挑战你呢?
今天,我们就是要讲如何提升数据敏感度的方法,帮助你快速了解数据逻辑的方案,一秒找到数据异常,从此告别“熬夜加班”
一、什么叫数据敏感度
简单来说, 讨论问题的时候,不会说一些泛泛的概念,而是代之以“数据说明”,提供翔实有公信力的数据,同时,依据数据逻辑来推论结论。 如果这个人还能炒股挣到钱,就是从实战结果判断这个人数据敏感度真的很高了:)
对于分析师而言,数据敏感度高的表现应该是这样的:
1、看到业务关键数据指标,能够在1秒内,发现它们是高了低了还是错了;
2、知道所有指标是怎么来的,知道它们的意义以及相互的关系,进而判断数据异常的原因;
3、拿到海量的数据,能够根据分析目标很快理出分析框架,得出结论。
在我面试的时候,判断一个人对数据是否敏感,方法很简单。
一种是给几张多维度的图表给他看,问他有什么想法:看他能否看出数据偏差,能否发现偏差的是某个产品,能否分析出这个产品为什么会出现这样的状况等等。
一种是给一个规模推算的问题,看他推演的逻辑与技巧:
例如在深圳机场每天出行的有多少人?是直接手机查资料,还是从上到下推演,所以从小到上归纳,都能判断一个人的思考框架是怎样的,或者在面对未知问题的时候是怎样从容面对的。一个牛逼的分析师,每天都会面对一些超出能力范围内的判断决策,抗压能力也很重要。
二、怎么提升数据敏感度
秘籍:熟悉业务
是的,数据敏感度练成的基础是一定要对业务非常熟悉,无数次的推测及验证都是有用的宝贵经验。
接下来我会根据分析师数据敏感度高的三个表现来给出提升数据敏感度的方法。
1、如何快速判断数据是高了低了还是错了:熟记关键指标的大数、观察趋势、紧盯异常值
这种快速判断是基于平时对业务数据的熟记与使用的,请相信每个人的记忆力有好坏之分,但是只要下功夫,熟记业务的关键指标,了解他们的基本规律,经过一段时间的积累,你看这些数据的时候肯定会觉得的胸有成竹。
记忆数据的技巧也是有的,不需要记全,只需要把关键指标的大数记下来,忽略小数,每天早上养成看报表的习惯,观察趋势,盯紧异常数,多看一些别人是怎么分析异常原因的案例。慢慢地,对各项数据有了基本概念之后,理解数据背后的业务逻辑关系,这样在阅读报表时也能很快发现异常值,及时进行追踪。
这是一个用数据说话的时代。有句话说的好:“不能透过数字,看出数字背后问题的管理人员,不是好管理人员”。
2、知道所有指标是怎么来的,知道它们的意义以及相互的关系,进而判断数据异常的原因
提升敏感度的时刻想着三个问题:
1)数据怎么来的?
理解业务,分析溯源,同时也要判断数据来源的可靠性
2)指标维度有哪些?
理解评估标准,不同业务有不同的关键业务指标,利用思维导图积累相关业务的指标体系,多总结多问为什么;指标体系经常用于数据细分找原因,知道数据构成才能更快地拆分数据,找到异常原因。
3)数据如何说明业务?
指标在业务中的应用,业务数据正常水平是怎么样的,受节假日或者活动营销的影响的数据又是怎么样的,要多对比,结合环比同比明白数据高低的意义等。
3、拿到海量的数据,能够根据分析目标很快理出分析框架,得出结论。
这一步涉及到分析框架的应用,这些我在《快速了解一个行业》系列文章中有详细提到,有兴趣的同学可以翻翻历史文章。
分析框架很多种,熟悉得越多,你会发现不同的情况有不同的适应框架,但最好是根据通用的框架再结合业务逻辑总结适合自己的,这样才能事半功倍。
最后,建议大家平时看新闻、看文章,遇到数据多多联想猜测,数据敏感度取决于我们方方面面的积累。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27