
作者 | 李梅花
来源 | 玩转数据分析
大家有没有特别羡慕加害怕过这种人,他能一眼看出你做的PPT里面的数据异常,随时能提出一个数据证明你的小结论有问题,然后以你一个数据问题迅速推翻你整个报告的结论,结果就是你做了整整一个月的分析,全毁了,从头再来。
这种人一般数据敏感度极高,逻辑性极强,且对你的汇报有生杀大权。每次被挑战的时候,你是不是特别想提升自己的数据敏感度,从此只有你挑战别人,没有能挑战你呢?
今天,我们就是要讲如何提升数据敏感度的方法,帮助你快速了解数据逻辑的方案,一秒找到数据异常,从此告别“熬夜加班”
一、什么叫数据敏感度
简单来说, 讨论问题的时候,不会说一些泛泛的概念,而是代之以“数据说明”,提供翔实有公信力的数据,同时,依据数据逻辑来推论结论。 如果这个人还能炒股挣到钱,就是从实战结果判断这个人数据敏感度真的很高了:)
对于分析师而言,数据敏感度高的表现应该是这样的:
1、看到业务关键数据指标,能够在1秒内,发现它们是高了低了还是错了;
2、知道所有指标是怎么来的,知道它们的意义以及相互的关系,进而判断数据异常的原因;
3、拿到海量的数据,能够根据分析目标很快理出分析框架,得出结论。
在我面试的时候,判断一个人对数据是否敏感,方法很简单。
一种是给几张多维度的图表给他看,问他有什么想法:看他能否看出数据偏差,能否发现偏差的是某个产品,能否分析出这个产品为什么会出现这样的状况等等。
一种是给一个规模推算的问题,看他推演的逻辑与技巧:
例如在深圳机场每天出行的有多少人?是直接手机查资料,还是从上到下推演,所以从小到上归纳,都能判断一个人的思考框架是怎样的,或者在面对未知问题的时候是怎样从容面对的。一个牛逼的分析师,每天都会面对一些超出能力范围内的判断决策,抗压能力也很重要。
二、怎么提升数据敏感度
秘籍:熟悉业务
是的,数据敏感度练成的基础是一定要对业务非常熟悉,无数次的推测及验证都是有用的宝贵经验。
接下来我会根据分析师数据敏感度高的三个表现来给出提升数据敏感度的方法。
1、如何快速判断数据是高了低了还是错了:熟记关键指标的大数、观察趋势、紧盯异常值
这种快速判断是基于平时对业务数据的熟记与使用的,请相信每个人的记忆力有好坏之分,但是只要下功夫,熟记业务的关键指标,了解他们的基本规律,经过一段时间的积累,你看这些数据的时候肯定会觉得的胸有成竹。
记忆数据的技巧也是有的,不需要记全,只需要把关键指标的大数记下来,忽略小数,每天早上养成看报表的习惯,观察趋势,盯紧异常数,多看一些别人是怎么分析异常原因的案例。慢慢地,对各项数据有了基本概念之后,理解数据背后的业务逻辑关系,这样在阅读报表时也能很快发现异常值,及时进行追踪。
这是一个用数据说话的时代。有句话说的好:“不能透过数字,看出数字背后问题的管理人员,不是好管理人员”。
2、知道所有指标是怎么来的,知道它们的意义以及相互的关系,进而判断数据异常的原因
提升敏感度的时刻想着三个问题:
1)数据怎么来的?
理解业务,分析溯源,同时也要判断数据来源的可靠性
2)指标维度有哪些?
理解评估标准,不同业务有不同的关键业务指标,利用思维导图积累相关业务的指标体系,多总结多问为什么;指标体系经常用于数据细分找原因,知道数据构成才能更快地拆分数据,找到异常原因。
3)数据如何说明业务?
指标在业务中的应用,业务数据正常水平是怎么样的,受节假日或者活动营销的影响的数据又是怎么样的,要多对比,结合环比同比明白数据高低的意义等。
3、拿到海量的数据,能够根据分析目标很快理出分析框架,得出结论。
这一步涉及到分析框架的应用,这些我在《快速了解一个行业》系列文章中有详细提到,有兴趣的同学可以翻翻历史文章。
分析框架很多种,熟悉得越多,你会发现不同的情况有不同的适应框架,但最好是根据通用的框架再结合业务逻辑总结适合自己的,这样才能事半功倍。
最后,建议大家平时看新闻、看文章,遇到数据多多联想猜测,数据敏感度取决于我们方方面面的积累。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17