京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 李梅花
来源 | 玩转数据分析
不知不觉,我已经做数据分析相关工作已经有9年时间了。经常有被问到,数据分析师的核心竞争力在哪里,好像入门的工具都挺好掌握的呀。是的,知识跟技能都是可以通过时间跟努力来学会的,但是有5大能力是数据分析师更应该具备且持续提升的,也是我们的核心竞争力。
1
解决问题的能力
这是我觉得是所有能力中最重要的能力。
所有的职位、技能、知识都是为了解决问题而来。数据分析师的职业本质是用数据分析技能来帮助业务/老板实现目标。在实现目标的过程中会遇到很多问题,我们可能会用到数据发现机会点、预估风险,也会用数据对比来做可行性分析,用数据及时发现问题。每种分析主题可能对应不同的方法与分析模型,但是核心点是我们得知道什么情况适用什么问题,还要灵活应对。这灵活应对的能力,就是解决问题的能力。
可能你知道很多知识,但是遇到棘手的问题也会束手无策,这时候分析高手们会淡定自若地分析问题的背景、逻辑,拆分问题直到能解决为止。
简而言之,老板交给你一个任务,不管用什么方式,你都能解决,这就是你的核心竞争力,你可以不会SQL不会算法。
如何提升解决问题能力,我觉得,又得靠提升下面的几项能力。
2
逻辑思维能力
简而言之,就是要能快速get到问题核心点的能力。
老板交给你一件事情,你能快速理解里面的核心是什么么?新到一个部门,你能快速理清楚里面的业务逻辑不至于一头雾水无从下手么?写分析结论时,能做到不重不漏又清晰明了么?
逻辑思维能力是靠训练出来的,例如写分析报告,就是靠一次次的优化修改你才会知道其实一句话可以说得这么精炼,直指人心。当然,也需要理论知识的引导,建议可以学习《逻辑学》、《数学分析》、《金字塔原理》、《战略分析》等逻辑训练的内容。从小不偏科,喜欢写作,大学学的数学,毕业拿到第一个offer就是市场分析,冥冥中,我有一种注定要做数据分析师的感觉。
任何能力都可以通过有效的学习得到,所有我们得拥有下面这个核心能力。
3
学习能力
这里的学习能力不是指考试考高分的能力,当然,能考高分的同学学习能力都很强。
我特指的是理解、模仿、快速应用、复盘总结形成规律的能力。
数据分析师的职业特性导致需要不断的学习新的业务知识,需要在短时间内了解一个行业并给出自己专业的建议,这就需要你有很强的学习能力。同时大数据时代工具变化发展快,你也得多掌握一些技能才能帮助你提升效率,一个会自己从数据库快速找到源数据发现问题的分析师,肯定会比只会焦急等待漫长数据研发流程的分析师更早出分析结论。当然,合理的分工协作是能整体提升团队效能的,能提前规划分析指标体系落地到报表系统,提前做好拆分钻取工作,这就更加有效率了。
学习东西,不仅是通过看书这个途径,还有上课(线下的,线上的),还有工作中实践,还要多跟人交流。学习也不仅是学习数据分析相关的,也要多学习跨领域的知识。想想我自己,觉得自己圈子太小,只顾着自己的一亩三分地,这也让我自己的见识受限。所以我也在逐渐改变,多与不同行业的人交流,多跟不同岗位的同事交流,给自己一周必须跟一个以前没有交流过的人交流的KPI。
4
数据敏感力
数据分析师还有一个特别的能力,相对于其他岗位的同学,会更容易第一眼发现数据的规律、数据中的异常,这就是对数据敏感的能力。
对数据敏感,是建立在对业务理解的基础上的。
这里我建议大家尽可能参加不同类型的数据分析项目,不仅仅是做需求,写分析报告,也可以尽量去参加数据指标体系的建设、数据产品的规划,最好还能做数据挖掘相关的项目。各种类型的项目都有经验,你才能显示出数据领域更加专业的能力。当然,初期参与自己不熟悉的项目,就得多付出,多学习总结,不要太计较短期所得,万物长宜放眼量。
5
沟通能力
数据分析师还有一个重要的作用,那就是连接业务与开发。
这时候沟通能力就非常重要了。
乐于沟通,而且能让人愿意跟你沟通,是个非常难得的能力。首先你得拥有上面提到的能力,特别是逻辑思维能力,言简意赅,言之有物,同时还得乐于分享,愿意把你知道的东西分享给更多人。
当然,如果你有足够的影响力,特别是在专业方面的,大家也会更乐于听你讲。
所以,我们还是要多提升自己,多输出,能被别人需要是幸福感的重要来源之一。
综上,相信有远见的数据分析师,一定会积极提升以上讲到的五大核心能力:
1、解决问题的能力
2、逻辑思维能力
3、学习能力
4、数据敏感力
5、沟通能力。
让我们一起加油,玩转数据分析!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29