
作者 | zglg
来源 | Python与算法社区
python里[] 表示一个列表,对容器类型的数据进行运算和操作,生成新的列表最高效、快速的办法,就是列表生成式。
它优雅、简洁,值得大家多多使用!今天盘点列表生成式在工作中的主要使用场景。
入门
1
range快速生成连续列表
In [1]: a = range(11) In [2]: a Out[2]: range(0, 11) In [3]: list(a) Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2
对列表里面的数据进行运算后重新生成一个新的列表:
In [5]: a = range(0,11) In [6]: b = [x**2 for x in a] In [7]: b Out[7]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
3
对一个列表里面的数据筛选,只计算[0,11) 中偶数的平方:
In [10]: a = range(11) In [11]: c = [x**2 for x in a if x%2==0] In [12]: c Out[12]: [0, 4, 16, 36, 64, 100]
4
前面列表生成式都只传一个参数x,带有两个参数的运算:
In [13]: a = range(5) In [14]: b = ['a','b','c','d','e'] In [20]: c = [str(y) + str(x) for x, y in zip(a,b)] In [21]: c Out[21]: ['a0', 'b1', 'c2', 'd3', 'e4']
5
结合字典,打印键值对:
In [22]: a = {'a':1,'b':2,'c':3} In [23]: b = [k+ '=' + v for k, v in a.items()] In [24]: b = [k+ '=' + str(v) for k, v in a.items()] In [25]: b Out[25]: ['a=1', 'b=2', 'c=3']
6
输出某个目录下的所有文件和文件夹的名称:
In [33]: [d for d in os.listdir('d:/summary')]
Out[33]: ['a.txt.txt', 'python-100']
7
列表中所有单词都转化为小写:
In [34]: a = ['Hello', 'World', '2019Python'] In [35]: [w.lower() for w in a] Out[35]: ['hello', 'world', '2019python']
进阶
8
将值分组:
In [36]: def bifurcate(lst, filter): ...: return [ ...: [x for i,x in enumerate(lst) if filter[i] == True], ...: [x for i,x in enumerate(lst) if filter[i] == False] ...: ] ...: In [37]: bifurcate(['beep', 'boop', 'foo', 'bar'], [True, True, False, True]) Out[37]: [['beep', 'boop', 'bar'], ['foo']]
9
进一步抽象例子8,根据指定函数fn 对lst 分组:
In [38]: def bifurcate_by(lst, fn): ...: return [ ...: [x for x in lst if fn(x)], ...: [x for x in lst if not fn(x)] ...: ] ...: In [39]: bifurcate_by(['beep', 'boop', 'foo', 'bar'], lambda x: x[0] == 'b') Out[39]: [['beep', 'boop', 'bar'], ['foo']]
10
返回可迭代对象的差集,注意首先都把a, b用set 包装
In [53]: def difference(a, b):
...: _a, _b =set(a),set(b)
...: return [item for item in _a if item not in _b]
...:
...:
In [54]: difference([1,1,2,3,3], [1, 2, 4])
Out[54]: [3]
11
进一步抽象10,根据函数fn 映射后选取差集,如下列表元素分别为单个元素和字典的例子:
In [61]: def difference_by(a, b, fn):
...: ...: _b = set(map(fn, b))
...: ...: return [item for item in a if fn(item) not in _b]
...: ...:
...:
In [62]: from math import floor
...: difference_by([2.1, 1.2], [2.3, 3.4],floor)
Out[62]: [1.2]
In [63]: difference_by([{ 'x': 2 }, { 'x': 1 }], [{ 'x': 1 }], lambda v : v['x'])
Out[63]: [{'x': 2}]
12
过滤非重复值,结合list 的count( 统计出元素在列表中出现次数):
In [64]: def filter_non_unique(lst): ...: return [item for item in lst if lst.count(item) == 1] In [65]: filter_non_unique([1, 2, 2, 3, 4, 4, 5]) Out[65]: [1, 3, 5]
熟练操作以上12个例子,就算掌握python 中非常有用的列表生成式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12