
作者 | 刘顺祥
来源 | 数据分析1480
数据分析过程中最头疼也是工作量最大的部分算是探索和清洗了——探索的目的是了解数据,了解数据背后隐藏的规律;洗的目的则是为了让干净的数据进入分析或建模的下一个环节。小编将通过三篇文章,详细讲解工作中常规的数据清洗方法,包括数据类型的转换,重复数据的处理,缺失值的处理以及异常数据的识别和处理。这是Python数据清洗系列的第一篇文章,主要分享的内容包括——数据类型的转换and冗余数据的识别和处理.
如下表所示,为某公司用户的个人信息和交易数据,涉及的字段为用户id、性别、年龄、受教育水平、交易金额和交易日期。从表面上看,似乎没有看出数据背后可能存在的问题,那接下来就将其读入到Python中,并通过探索的方式发现数据中的问题。
读取数据,以及查看数据规模、查看数据中各变量的数据类型的代码如下:
# 导入第三方包 import pandas as pd # 读入外部数据 data3 = pd.read_excel(io=r'C:\Users\Administrator\Desktop\datas\data3.xlsx') # 查看数据的规模 data3.shape out: (3000, 6) # 查看表中各变量的数据类型 # data3.dtypes out:
表中各变量的数据类型如表下表所示:
上述代码利用shape“方法”返回了数据集的规模,即该数据包含3000行6列;通过dtypes“方法”则返回了数据集中各变量的数据类型——除id变量和age变量为数值型,其余变量均为字符型。直观上能够感受到一点问题,即数据类型不对,例如用户id应该为字符型,消费金额custom_amt为数值型,订单日期为日期型。如果发现数据类型不对,如何借助于Python工具实现数据类型的转换呢?可参照如下代码的实现。
# 数值型转字符型 data3['id'] = data3['id'].astype(str) # 字符型转数值型 data3['custom_amt'] = data3['custom_amt'].str[1:].astype(float) # 字符型转日期型 data3['order_date'] = pd.to_datetime(data3['order_date'], format = '%Y年%m月%d日') # 重新查看数据集的各变量类型 data3.dtypes out:
这些数据经过处理后,各个字段的数据类型如下表所示:
如上结果所示,三个变量全都转换成了各自所期望的数据类型。astype“方法”用于数据类型的强制转换,可选择的常用转换类型包括str(表示字符型)、float(表示浮点型)和int(表示整型)。由于消费金额custom_amt变量中的值包含人民币符号“¥”,所以在数据类型转换之前必须将其删除(通过字符串的切片方法删除,[1:]表示从字符串的第二个元素开始截断)。对于字符转日期问题,推荐使用更加灵活的to_datetime函数,因为它在format参数的调节下,可以识别任意格式的字符型日期值。
需要注意的是,Python中的函数有两种表现形式,一种是常规理解下的函数(语法为func(parameters),如to_datetime函数),另一种则是“方法”(语法为obj.func(parameters),如dtypes和astype“方法”)。两者的区别在于 “方法”是针对特定对象的函数(即该“方法”只能用在某个固定类型的对象上),而函数并没有这方面的限制。
基于如上类型的转换结果,最后浏览一下数据的展现形式:
# 预览数据的前5行 data3.head()
如上过程是对数据中各变量类型的判断和转换,除此还需要监控表中是否存在“脏”数据,如冗余的重复观测和缺失值等。可以通过duplicated“方法”进行 “脏”数据的识别和处理。仍然对上边的data3数据为例进行操作,具体代码如下所示。
# 判断数据中是否存在重复观测 data3.duplicated().any() out: False
如上结果返回的是False,说明该数据集中并不存在重复观测。假如读者利用如上的代码在数据集中发现了重复观测,可以使用drop_duplicates“方法”将冗余信息删除。
需要说明的是,在使用duplicated“方法”对数据行作重复性判断时,会返回一个与原数据行数相同的序列(如果数据行没有重复,则对应False,否则对应True),为了得到最终的判断结果,需要再使用any“方法”(即序列中只要存在一个True,则返回True)。
duplicated“方法”和drop_duplicates“方法”都有一个非常重要的参数,就是subset。默认情况下不设置该参数时,表示对数据的所有列进行重复性判断;如果需要按指定的变量做数据的重复性判断时,就可以使用该参数指定具体的变量列表。举例如下:
# 构造数据 df = pd.DataFrame(dict(name = ['张三','李四','王二','张三','赵五','丁一','王二'], gender = ['男','男','女','男','女','女','男'], age = [29,25,27,29,21,22,27], income = [15600,14000,18500,15600,10500,18000,13000], edu = ['本科','本科','硕士','本科','大专','本科','硕士'])) # 查看数据 df
目测有两条数据完全一样,就是用户张三,如果直接使用drop_duplicates“方法”,而不做任何参数的修改时,将会删除第二次出现的用户张三。代码如下:
# 默认情况下,对数据的所有变量进行判断 df.drop_duplicates()
假设在数据清洗中,用户的姓名和年龄相同就认为是重复数据,那么该如何基于这两个变量进行重复值的删除呢?此时就需要使用subset参数了,代码如下:
df.drop_duplicates(subset=['name','age'])
需要注意的是,使用drop_duplicates“方法”删除重复数据,并不能直接影响到原始数据,即原始数据中还是存在重复观测的。如需使drop_duplicates“方法”的删除功能作用在原始数据中,必须将inplace参数设置为True。
本期的内容就介绍到这里,下一篇将分享缺失值的识别和处理技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16