
作者 | 常国珍、赵仁乾、张秋剑
来源 |《Python数据科学:技术详解与商业实践》
数据清洗是数据分析的必备环节,在进行分析过程中,会有很多不符合分析要求的数据,例如重复、错误、缺失、异常类数据。
01 重复值处理
数据录入过程、数据整合过程都可能会产生重复数据,直接删除是重复数据处理的主要方法。pandas提供查看、处理重复数据的方法duplicated和drop_duplicates。以如下数据为例:
>sample = pd.DataFrame({'id':[1,1,1,3,4,5], 'name':['Bob','Bob','Mark','Miki','Sully','Rose'], 'score':[99,99,87,77,77,np.nan], 'group':[1,1,1,2,1,2],}) >sample group id name score 0 1 1 Bob 99.0 1 1 1 Bob 99.0 2 1 1 Mark 87.0 3 2 3 Miki 77.0 4 1 4 Sully 77.0 5 2 5 Rose NaN
发现重复数据通过duplicated方法完成,如下所示,可以通过该方法查看重复的数据。
>sample[sample.duplicated()] group id name score 1 1 1 Bob 99.0
需要去重时,可drop_duplicates方法完成:
>sample.drop_duplicates() group id name score 0 1 1 Bob 99.0 2 1 1 Mark 87.0 3 2 3 Miki 77.0 4 1 4 Sully 77.0 5 2 5 Rose NaN
drop_duplicates方法还可以按照某列去重,例如去除id列重复的所有记录:
>sample.drop_duplicates('id') group id name score 0 1 1 Bob 99.0 3 2 3 Miki 77.0 4 1 4 Sully 77.0 5 2 5 Rose NaN
02 缺失值处理
缺失值是数据清洗中比较常见的问题,缺失值一般由NA表示,在处理缺失值时要遵循一定的原则。
首先,需要根据业务理解处理缺失值,弄清楚缺失值产生的原因是故意缺失还是随机缺失,再通过一些业务经验进行填补。一般来说当缺失值少于20%时,连续变量可以使用均值或中位数填补;分类变量不需要填补,单算一类即可,或者也可以用众数填补分类变量。
当缺失值处于20%-80%之间时,填补方法同上。另外每个有缺失值的变量可以生成一个指示哑变量,参与后续的建模。当缺失值多于80%时,每个有缺失值的变量生成一个指示哑变量,参与后续的建模,不使用原始变量。
在下图中展示了中位数填补缺失值和缺失值指示变量的生成过程。
▲图5-8:缺失值填补示例
Pandas提供了fillna方法用于替换缺失值数据,其功能类似于之前的replace方法,例如对于如下数据:
> sample group id name score 0 1.0 1.0 Bob 99.0 1 1.0 1.0 Bob NaN 2 NaN 1.0 Mark 87.0 3 2.0 3.0 Miki 77.0 4 1.0 4.0 Sully 77.0 5 NaN NaN NaN NaN
分步骤进行缺失值的查看和填补如下:
1. 查看缺失情况
在进行数据分析前,一般需要了解数据的缺失情况,在Python中可以构造一个lambda函数来查看缺失值,该lambda函数中,sum(col.isnull())表示当前列有多少缺失,col.size表示当前列总共多少行数据:
>sample.apply(lambda col:sum(col.isnull())/col.size) group 0.333333 id 0.166667 name 0.166667 score 0.333333 dtype: float64
2. 以指定值填补
pandas数据框提供了fillna方法完成对缺失值的填补,例如对sample表的列score填补缺失值,填补方法为均值:
>sample.score.fillna(sample.score.mean()) 0 99.0 1 85.0 2 87.0 3 77.0 4 77.0 5 85.0 Name: score, dtype: float64
当然还可以以分位数等方法进行填补:
>sample.score.fillna(sample.score.median()) 0 99.0 1 82.0 2 87.0 3 77.0 4 77.0 5 82.0 Name: score, dtype: float64
3. 缺失值指示变量
pandas数据框对象可以直接调用方法isnull产生缺失值指示变量,例如产生score变量的缺失值指示变量:
>sample.score.isnull() 0 False 1 True 2 False 3 False 4 False 5 True Name: score, dtype: bool
若想转换为数值0,1型指示变量,可以使用apply方法,int表示将该列替换为int类型。
>sample.score.isnull().apply(int) 0 0 1 1 2 0 3 0 4 0 5 1 Name: score, dtype: int64
03 噪声值处理
噪声值指数据中有一个或几个数值与其他数值相比差异较大,又称为异常值、离群值(outlier)。
对于大部分的模型而言,噪声值会严重干扰模型的结果,并且使结论不真实或偏颇,如图5-9。需要在数据预处理的时候清除所以噪声值。噪声值的处理方法很多,对于单变量,常见的方法有盖帽法、分箱法;多变量的处理方法为聚类法。下面进行详细介绍:
▲图5-9:噪声值(异常值、离群值)示例:年龄数据,圆圈为噪声值
1. 盖帽法
盖帽法将某连续变量均值上下三倍标准差范围外的记录替换为均值上下三倍标准差值,即盖帽处理(图5-10)。
▲图5-10:盖帽法处理噪声值示例
Python中可自定义函数完成盖帽法。如下所示,参数x表示一个pd.Series列,quantile指盖帽的范围区间,默认凡小于百分之1分位数和大于百分之99分位数的值将会被百分之1分位数和百分之99分位数替代:
>def cap(x,quantile=[0.01,0.99]): """盖帽法处理异常值 Args: x:pd.Series列,连续变量 quantile:指定盖帽法的上下分位数范围 """ # 生成分位数 Q01,Q99=x.quantile(quantile).values.tolist() # 替换异常值为指定的分位数 if Q01 > x.min(): x = x.copy() x.loc[x<Q01] = Q01 if Q99 < x.max(): x = x.copy() x.loc[x>Q99] = Q99 return(x)
现生成一组服从正态分布的随机数,sample.hist表示产生直方图,更多绘图方法会在下一章节进行讲解:
>sample = pd.DataFrame({'normal':np.random.randn(1000)}) >sample.hist(bins=50)
▲图5-11:未处理噪声时的变量直方图
对pandas数据框所有列进行盖帽法转换,可以以如下写法,从直方图对比可以看出盖帽后极端值频数的变化。
>new = sample.apply(cap,quantile=[0.01,0.99]) >new.hist(bins=50)
▲图5-12:处理完噪声后的变量直方图
2. 分箱法
分箱法通过考察数据的“近邻”来光滑有序数据的值。有序值分布到一些桶或箱中。
分箱法包括等深分箱:每个分箱中的样本量一致;等宽分箱:每个分箱中的取值范围一致。直方图其实首先对数据进行了等宽分箱,再计算频数画图。
比如价格排序后数据为:4、8、15、21、21、24、25、28、34
将其划分为(等深)箱:
将其划分为(等宽)箱:
分箱法将异常数据包含在了箱子中,在进行建模的时候,不直接进行到模型中,因而可以达到处理异常值的目的。
pandas的qcut函数提供了分箱的实现方法,下面介绍如何具体实现。
等宽分箱:qcut函数可以直接进行等宽分箱,此时需要的待分箱的列和分箱个数两个参数,如下所示,sample数据的int列为从10个服从标准正态分布的随机数:
>sample =pd.DataFrame({'normal':np.random.randn(10)}) >sample normal 0 0.065108 1 -0.597031 2 0.635432 3 -0.491930 4 -1.894007 5 1.623684 6 1.723711 7 -0.225949 8 -0.213685 9 -0.309789
现分为5箱,可以看到,结果是按照宽度分为5份,下限中,cut函数自动选择小于列最小值一个数值作为下限,最大值为上限,等分为五分。结果产生一个Categories类的列,类似于R中的factor,表示分类变量列。
此外弱数据存在缺失,缺失值将在分箱后将继续保持缺失,如下所示:
>pd.cut(sample.normal,5) 0 (-0.447, 0.277] 1 (-1.17, -0.447] 2 (0.277, 1.0] 3 (-1.17, -0.447] 4 (-1.898, -1.17] 5 (1.0, 1.724] 6 (1.0, 1.724] 7 (-0.447, 0.277] 8 (-0.447, 0.277] 9 (-0.447, 0.277] Name: normal, dtype: category Categories (5, interval[float64]): [(-1.898, -1.17] < (-1.17, -0.447] < (-0.447, 0.277] < (0.277, 1.0] < (1.0, 1.724]]
这里也可以使用labels参数指定分箱后各个水平的标签,如下所示,此时相应区间值被标签值替代:
> pd.cut(sample.normal,bins=5,labels=[1,2,3,4,5]) 0 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 5 Name: normal, dtype: category Categories (5, int64): [1 < 2 < 3 < 4 < 5]
标签除了可以设定为数值,也可以设定为字符,如下所示,将数据等宽分为两箱,标签为‘bad’,‘good’:
>pd.cut(sample.normal,bins=2,labels=['bad','good']) 0 bad 1 bad 2 bad 3 bad 4 bad 5 good 6 good 7 good 8 good 9 good Name: normal, dtype: category Categories (2, object): [bad < good]
等深分箱:等深分箱中,各个箱的宽度可能不一,但频数是几乎相等的,所以可以采用数据的分位数来进行分箱。依旧以之前的sample数据为例,现进行等深度分2箱,首先找到2箱的分位数:
>sample.normal.quantile([0,0.5,1]) 0.0 0.0 0.5 4.5 1.0 9.0 Name: normal, dtype: float64
在bins参数中设定分位数区间,如下所示完成分箱,include_lowest=True参数表示包含边界最小值包含数据的最小值:
>pd.cut(sample.normal,bins=sample.normal.quantile([0,0.5,1]), include_lowest=True) 0 [0, 4.5] 1 [0, 4.5] 2 [0, 4.5] 3 [0, 4.5] 4 [0, 4.5] 5 (4.5, 9] 6 (4.5, 9] 7 (4.5, 9] 8 (4.5, 9] 9 (4.5, 9] Name: normal, dtype: category Categories (2, object): [[0, 4.5] < (4.5, 9)]
此外也可以加入label参数指定标签,如下所示:
>pd.cut(sample.normal,bins=sample.normal.quantile([0,0.5,1]), include_lowest=True) 0 bad 1 bad 2 bad 3 bad 4 bad 5 good 6 good 7 good 8 good 9 good Name: normal, dtype: category Categories (2, object): [bad < good]
3. 多变量异常值处理-聚类法
通过快速聚类法将数据对象分组成为多个簇,在同一个簇中的对象具有较高的相似度,而不同的簇之间的对象差别较大。聚类分析可以挖掘孤立点以发现噪声数据,因为噪声本身就是孤立点。
本案例考虑两个变量income和age,散点图如图5-13所示,其中A、B表示异常值:
▲图5-13:多变量异常值示例
对于聚类方法处理异常值,其步骤如下所示:
输入:数据集S(包括N条记录,属性集D:{年龄、收入}),一条记录为一个数据点,一条记录上的每个属性上的值为一个数据单元格。数据集S有N×D个数据单元格,其中某些数据单元格是噪声数据。
输出:孤立数据点如图所示。孤立点A是我们认为它是噪声数据,很明显它的噪声属性是收入,通过对收入变量使用盖帽法可以剔除A。
另外,数据点B也是一个噪声数据,但是很难判定它在哪个属性上的数据出现错误。这种情况下只可以使用多变量方法进行处理。
常用检查异常值聚类算法为K-means聚类,会在后续章节中详细介绍,本节不赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15