京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 刘顺祥
来源 | 数据分析1480
这一期将分享我认为比较常规的100个实用函数,这些函数大致可以分为六类,分别是统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。
统计汇总函数
数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。
import pandas as pd import numpy as np x = pd.Series(np.random.normal(2,3,1000)) y = 3*x + 10 + pd.Series(np.random.normal(1,2,1000)) # 计算x与y的相关系数 print(x.corr(y)) # 计算y的偏度 print(y.skew()) # 计算y的统计描述值 print(x.describe()) z = pd.Series(['A','B','C']).sample(n = 1000, replace = True) # 重新修改z的行索引 z.index = range(1000) # 按照z分组,统计y的组内平均值 y.groupby(by = z).aggregate(np.mean)
# 统计z中个元素的频次 print(z.value_counts()) a = pd.Series([1,5,10,15,25,30]) # 计算a中各元素的累计百分比 print(a.cumsum() / a.cumsum()[a.size - 1])
数据清洗函数
同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。
x = pd.Series([10,13,np.nan,17,28,19,33,np.nan,27]) #检验序列中是否存在缺失值 print(x.hasnans) # 将缺失值填充为平均值 print(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill())
income = pd.Series(['12500元','8000元','8500元','15000元','9000元']) # 将收入转换为整型 print(income.str[:-1].astype(int)) gender = pd.Series(['男','女','女','女','男','女']) # 性别因子化处理 print(gender.factorize()) house = pd.Series(['大宁金茂府 | 3室2厅 | 158.32平米 | 南 | 精装', '昌里花园 | 2室2厅 | 104.73平米 | 南 | 精装', '纺大小区 | 3室1厅 | 68.38平米 | 南 | 简装']) # 取出二手房的面积,并转换为浮点型 house.str.split('|').str[2].str.strip().str[:-2].astype(float)
数据筛选
数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。
np.random.seed(1234) x = pd.Series(np.random.randint(10,20,10)) # 筛选出16以上的元素 print(x.loc[x > 16]) print(x.compress(x > 16)) # 筛选出13~16之间的元素 print(x[x.between(13,16)]) # 取出最大的三个元素 print(x.nlargest(3)) y = pd.Series(['ID:1 name:张三 age:24 income:13500', 'ID:2 name:李四 age:27 income:25000', 'ID:3 name:王二 age:21 income:8000']) # 取出年龄,并转换为整数 print(y.str.findall('age:(d+)').str[0].astype(int))
绘图与元素级函数
np.random.seed(123) import matplotlib.pyplot as plt x = pd.Series(np.random.normal(10,3,1000)) # 绘制x直方图 x.hist() # 显示图形 plt.show() # 绘制x的箱线图 x.plot(kind='box') plt.show() installs = pd.Series(['1280万','6.7亿','2488万','1892万','9877','9877万','1.2亿']) # 将安装量统一更改为“万”的单位 def transform(x): if x.find('亿') != -1: res = float(x[:-1])*10000 elif x.find('万') != -1: res = float(x[:-1]) else: res = float(x)/10000 return res installs.apply(transform)
时间序列函数
其他函数
import numpy as np import pandas as pd np.random.seed(112) x = pd.Series(np.random.randint(8,18,6)) print(x) # 对x中的元素做一阶差分 print(x.diff()) # 对x中的元素做降序处理 print(x.sort_values(ascending = False)) y = pd.Series(np.random.randint(8,16,100)) # 将y中的元素做排重处理,并转换为列表对象 y.unique().tolist()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16