
作者 | CDA数据分析师
Tableau内置的连接器可以连接到所有常用的数据源。
数据连接器
目前可以连接70多种数据源,分为本地连接和服务器连接。 Tableau支持的本地连接包括Excel、txt、csv、json等各类常见的源数据格式,还支持多种空间文件, 为使用地图分析提供了条件。
Tableau支持的服务连接包括各类数据库(如Mysql、Oracle、MongoDB)、在线数据服务(如google analtics)等,可以根据使用需要,与目标服务器建立连接关系。
如果以上提供的连接不满足您的需求,可以选择使用“其他数据库 (ODBC)”或“Web 数据连接器”创建自己的连接。
设置数据源
Tableau数据源是数据与Tableau之间的链接,本质上是数据、连接信息以及基于数据进行的自定义操作的总和。
数据源包含:
本地文件连接
打开Tableau Desktop进入数据连接界面,在连接到文件中选择要连接的文件类型。这里以Excel文件为例,单击“Microsoft Excel”在弹出的“打开”对话框中找到想要连接的文件。
双击或拖动表名至画布区,下方会显示数据预览。
数据库连接
在数据连接界面,连接到服务器中选择要连接的服务器。这里以“MySQL”为例,单击“MySQL”在弹出“MySQL”对话框输入服务器IP、端口号、用户名及密码即可登录到MySQL服务器。
建立连接后,在数据库列表中选择要连接的数据库,下方会显示当前数据库下可用的工作表。双击或拖动表名至画布区,下方会显示数据预览。
也可以双击或拖动“新自定义SQL”至画布区,输入SELECT语句以连接想要的数据。
剪贴板粘贴
组合数据源
在一个工作簿中可以同时创建不同的数据连接。
数据联结
当需要从多个数据表中获取数据时,则要用到数据联接操作。这里以两表联结为例,以两个表的共有字段作为关键字段来建立联结关系。 为了简单直观的操作演示,本文使用自制的Excel数据集demo,文件中包含table1和table2两个数据表。
联结方式
Tableau中支持四种联结方式:内联接、左联接、右联接和完全外部联接。通常情况,Tableau会自动判断两张表的关键字段并进行关联,如果关联不正确或关键字段不一致无法自动关联,可以手动进行关联。
数据合并
当需要将有多个结构一致的数据表整合汇总在一起时,则可以使用数据合并。数据联接是横向扩展,数据合并是纵向增加。 进行数据合并的要求是,每个数据表的==字段名、个数、顺序和数据类型必须完全一致==。 为了简单直观的操作演示,本文使用自制的Excel数据集demo,文件中包含三个数据表。
手动数据合并
双击或拖放“新建并集”至画布区,将需要合并的数据表拖入弹出的并集(手动)对话框。
合并后的数据表包含三个数据表的所有数据,并且各字段一一对应。需要注意的是,新增了sheet和table name两个字段,用于说明并集中的值的来源。
自动数据合并
双击或拖放“新建并集”至画布区,在弹出的“并集”对话框中选择“通配符(自动)”。 在“工作表”位置,将匹配内容改写为“班”,其中“班”是共有的名称,是通配符,用于匹配三个工作表。
合并后的数据表包含三个数据表的所有数据,并且各字段一一对应。需要注意的是,新增了path、sheet两个字段,用于说明并集中的值的来源路径及表名称。
数据连接方式
与数据源完成连接后,将数据表拖放至画布区,就可以在画布区看到“连接”方式的选择,分别是“实时”和“数据提取”。 实时:直接从数据源实时查询获取数据信息,Tableau不对源数据进行存储。 数据提取:将数据源的数据保存到本地计算机,大幅缩短Tableau查询载入源数据的时间。
为什么有两种连接方式
数据提取
数据提取是保存的数据子集。 在创建数据的数据提取时,可以通过使用筛选器和配置其他限制来减少数据总数。 创建数据提取后,可使用原始数据中的数据对其进行刷新。在刷新数据时,可以选择进行完全刷新或增量刷新。 完全刷新:默认方式,每次都会重新获取数据源的数据,创建的本地副本与数据源一致。 增量刷新:仅刷新自上次数据提取后新增的行。
数据提取的优势
创建数据提取
选择数据提取后,会显示“编辑”和“刷新”按钮。单击“编辑”在弹出的“数据提取”对话框中设置数据提取的要求。
指定在数据提取中存储数据的方式
PS:“单个表”和“多个表”选项只会影响数据提取中数据的存储方式,不影响数据提取中的表在“数据源”页面上的显示方式。 假设您的数据提取由三个表组成。如果直接打开配置为使用默认选项“单个表”的数据提取 (.hyper) 文件,在“数据源”页面上只会显示一个表。但是,如果打开使用打包数据源 (.tdsx) 文件的数据提取或包含其对应数据提取 (.hyper) 文件的数据源 (.tdsx) 文件,在“数据源”页面上可以看到包含数据提取的全部三个表。
指定要提取的数据量
设置完成后,单击工作表标签页可启动数据提取创建过程。在随后显示的对话框中,选择一个用于保存数据提取的位置,为该数据提取文件指定名称,然后单击“保存”即可。
在抽样数据与整个数据提取之间切换
当您使用大型数据提取时,您可能需要创建一个带数据样本的数据提取,以便每次将字段放在工作表标签页中的功能区上时,您都可以设置视图,同时避免长时间查询。然后,可以在使用带数据样本的数据提取和使用整个数据源之间进行切换,方法是在“数据”菜单中选择数据源,然后选择“使用数据提取”。
实时和数据提取的选择
什么情况下选择“实时”
什么情况下选择“数据提取”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28