京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
来源 | CDA数据科学研究院
如果您有着下面这些疑问:
那么,您可以通过学习本系列教程帮助您快速了解powerBI工具的使用,让您乘上数据分析之路的直通车。
本系列教程旨在帮助您了解和理解Excel中Power BI各插件的功能和应用,包括Power Query、Power Pivot、Power View、Power Map。我将分模块对其进行介绍,下面我们就先来简单了解一下Power BI这门数据分析工具吧。
Power BI简介
1. 什么是Power BI?
以下是Microsoft Power BI官网给的定义:
Power BI是一种业务分析解决方案,可让您可视化数据并在整个组织中共享洞察,或将其嵌入到您的应用或网站中。连接数百个数据源,通过实时仪表板和报告将数据变为现实。
简单来说,Power BI就是一个数据分析工具,它能实现数据分析的所有流程,包括对数据的获取、清洗、建模和可视化展示,从而来帮助个人或企业来对数据进行分析,用数据驱动业务,做出正确的决策。说到这,我们有必要先来了解和理解一下数据分析的整个流程。
首先,我们先来看一下数据分析的一般流程是怎样的?
在数据分析过程中,有3个“最”我们需要铭记于心:
通常,我们可以将数据分析比喻成做菜,做菜的过程其实就类似数据分析的过程:
2. 为什么要使用Power BI?
如果您还不清楚为什么要学习Power BI,下面这些回答相信可以解决您的困扰。
十多年的行业领导地位 Gartner连续12年将微软评为分析和商业智能平台的魔力象限领导者。下面展示的是2019年最新的评价:
3. Power BI包括哪些组件?
从Excel 2016版开始,就嵌入了Power BI系列的插件,其中包括:Power Query、Power Pivot、Power View、Power Map。
因此,在学习本系列课程前,您需要准备:
如果您已经拥有Excel 2016及以上版本,那么下面教程将教您在Excel中如何加载Power BI插件。
一、常见环境配置问题:
二、加载Power BI插件
第1步:打开文件选项卡:
第2步:单击“选项”:
第3步:打开COM加载项:
第4步:勾选Power BI插件:
三、检查Power BI插件是否可以使用
1. Power Query检查
数据选项卡—>从表格—>进入PQ界面
在“转换选项卡”下查看是否有“提取”命令,如果有,说明Power Query可正常使用!
如果没有“提取”命令,选择文件-账户-更新下Excel
2. Power Pivot检查
查看功能区中是否有“Power Pivot”选项卡,如果有,说明配置成功!
3. Power Map检查
在插入选项卡下打开三维地图,注意需要连接网络,如果打不开可以尝试先将IE浏览器打开后再启动三维地图:
4. Power View检查
首先,先添加Power View命令
Power View选项卡中打开Power View
如果打开不成功,需要添加"EnableControls"文件夹里面的注册表和安装"Silverlight"
最后,2016家庭学生版重装失败的,可以选择使用Power BI Desktop进行替代使用Power View的功能。
下面我们来学习Power Query获取数据
下面我们开始来学习Power BI的第一个模块:Power Query模块。
在本小节,您将会学习怎样使用Power Query来获取数据,包括:
1. 获取本地数据
下面我们以获取Excel文件中的数据为例:
首先,我们先新建一个Excel文件,然后在数据选项卡下依次打开:新建查询——>从文件——>从工作簿
打开之后,找到您想要导入的Excel工作簿并导入即可
单击选择要导入的表后进行加载
双击或右键选择编辑即可进入Power Query编辑界面
2. 获取网页数据
下面我们以获取某篮球队的队员信息为例:
首先,在其官网选择您喜欢的一支球队
打开球员信息页面
打开一个新的Excel表格,在数据选项卡中依次打开:新建查询——>从其他源——>自网站
将复制的网址输入,点击确定
勾选“选择多项”,然后选择Table0表和Table2表进行加载,数据获取成功
注:若想查找已导入的数据,数据选项卡下“显示查询”可显示当前Excel下已导入的表
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31