
作者 | 磐怼怼
来源 | 磐创AI
数据科学家是“在统计方面比任何软件工程师都要出色,在软件工程方面比任何统计学家都出色的人”。许多数据科学家都有统计学背景,但很少有软件工程经验。我是一位高级数据科学家,在Python编码的Stackoverflow上排名第一,并与许多(初级)数据科学家合作。下面是我经常看到的10个常见错误。
1. 不共享代码中引用的数据
数据科学需要代码和数据。因此,要使其他人能够重现您的结果,他们需要有权访问数据。虽然看起来很基础,但是很多人忘记了共享代码的数据。
import pandas as pd
df1 = pd.read_csv('file-i-dont-have.csv') # 错误
do_stuff(df)
解决方案:使用d6tpipe共享数据文件,或上传到S3 / web / google等或保存到数据库,以他人可以检索文件(但不要将它们添加到git,详见下文)。
2. 硬编码无法访问的路径
与错误1相似,如果您对其他人无法访问的路径进行硬编码,则他们将无法运行您的代码,因此要查看很多地方手动更改路径。
import pandas as pd
df = pd.read_csv('/path/i-dont/have/data.csv') # 错误
do_stuff(df)
# or
impor os
os.chdir('c:\\Users\\yourname\\desktop\\python') # 错误
解决方案:使用相对路径,配置全局路径变量或d6tpipe使数据易于访问。
3. 将数据与代码混合
由于数据科学代码需要数据,为什么不将其存储到同一目录?当您使用它时,也可以在其中保存图像,日志和其他垃圾文件。
├── data.csv ├── ingest.py ├── other-data.csv ├── output.png ├── report.html └── run.py
解决方案:将目录按照类别进行组织,例如数据,日志,代码等。
4. Git提交带有源代码的数据
现在大多数人都可以控制他们的代码版本(如果不使用,那是另一个错误!参见git)。为了共享数据,可能想将数据文件添加到版本控制中。如果是很小的文件还可以,但是git并没有对数据文件进行优化,尤其是大文件。
git add data.csv
解决方案:使用问题1中提到的工具来存储和共享数据。如果确实要对控制数据进行版本控制,请参阅d6tpipe,DVC和Git大文件存储。
5. 编写函数而不是DAG
有足够的数据,接下来谈谈实际的代码!由于在学习代码时首先要学习的内容之一就是函数,因此数据科学代码通常被组织为一系列线性运行的函数。这可能会导致几个问题。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train) model = sklearn.svm.SVC() model.fit(df_train.iloc[:,:-1], df_train['y'])
解决方案:最好将数据科学代码编写为一组任务,并且它们之间具有依赖性,而不是线性链接函数。使用d6tflow或airflow。
6. 循环
和函数一样,for循环是在学习编码时首先要学习的东西。它们易于理解,但它们速度慢且过于冗长,通常表示您不知道有向量化的替代方案。
x = range(10) avg = sum(x)/len(x); std = math.sqrt(sum((i-avg)**2 for i in x)/len(x)); zscore = [(i-avg)/std for x] # should be: scipy.stats.zscore(x) # or groupavg = [] for i in df['g'].unique(): dfg = df[df[g']==i] groupavg.append(dfg['g'].mean()) # should be: df.groupby('g').mean()
解决方案:Numpy,scipy和pandas具有向量化功能,可用于大多数的循环。
7. 不编写单元测试
随着数据,参数或用户输入的更改,您的代码可能会中断,有时您可能不会注意到。这可能会导致错误的输出,如果有人根据您的输出做出决策,那么错误的数据将导致错误的决策!
解决方案:使用assert语句检查数据。pandas有相等测试,d6tstack有数据摄取和检查,d6tjoin数据连接。代码示例:
assert df['id'].unique().shape[0] == len(ids) # 数据是否有所有的id assert df.isna().sum()<0.9 # 检查缺失的数据 assert df.groupby(['g','date']).size().max() ==1 # 是否有重复的数据 assert d6tjoin.utils.PreJoin([df1,df2],['id','date']).is_all_matched() # 所有的id是否匹配
8. 不记录代码
我明白你着急进行一些分析。您可以一起努力取得成果给客户或老板。然后一个星期后,他们说“请您更新此内容”。您看着您的代码,不记得为什么要这么做。现在想象其他人需要运行它。
def some_complicated_function(data):
data = data[data['column']!='wrong']
data = data.groupby('date').apply(lambda x: complicated_stuff(x))
data = data[data['value']<0.9]
return data
解决方案:即使在完成分析之后,也要花点时间记录所做的工作。您将感谢自己,其他人更加感谢!
9. 将数据另存为csv或pickle
回到数据,毕竟是数据科学。就像函数和for循环一样,通常使用CSV和pickle文件,但它们实际上并不是很好。CSV不包含架构,因此每个人都必须再次解析数字和日期。pickle可以解决此问题,但只能在python中工作,并且不能压缩。两者都不是存储大型数据集的良好格式。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train)
解决方案:使用parquet 或其他具有数据格式的二进制数据格式,最好是压缩数据的格式。d6tflow自动将任务的数据输出保存为parquet,不需要你进行处理。
10. 使用jupyter笔记本
让我们以一个有争议的结论来结束:jupyter notebooks 与CSV一样普遍。很多人使用它们,那并不是好事。Jupyter notebooks 促进了上述许多不良的软件工程习惯,尤其是:
入门很容易,但是扩展性很差。
解决方案:使用pycharm或spyder。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27