
作者 | 磐怼怼
来源 | 磐创AI
数据科学家是“在统计方面比任何软件工程师都要出色,在软件工程方面比任何统计学家都出色的人”。许多数据科学家都有统计学背景,但很少有软件工程经验。我是一位高级数据科学家,在Python编码的Stackoverflow上排名第一,并与许多(初级)数据科学家合作。下面是我经常看到的10个常见错误。
1. 不共享代码中引用的数据
数据科学需要代码和数据。因此,要使其他人能够重现您的结果,他们需要有权访问数据。虽然看起来很基础,但是很多人忘记了共享代码的数据。
import pandas as pd
df1 = pd.read_csv('file-i-dont-have.csv') # 错误
do_stuff(df)
解决方案:使用d6tpipe共享数据文件,或上传到S3 / web / google等或保存到数据库,以他人可以检索文件(但不要将它们添加到git,详见下文)。
2. 硬编码无法访问的路径
与错误1相似,如果您对其他人无法访问的路径进行硬编码,则他们将无法运行您的代码,因此要查看很多地方手动更改路径。
import pandas as pd
df = pd.read_csv('/path/i-dont/have/data.csv') # 错误
do_stuff(df)
# or
impor os
os.chdir('c:\\Users\\yourname\\desktop\\python') # 错误
解决方案:使用相对路径,配置全局路径变量或d6tpipe使数据易于访问。
3. 将数据与代码混合
由于数据科学代码需要数据,为什么不将其存储到同一目录?当您使用它时,也可以在其中保存图像,日志和其他垃圾文件。
├── data.csv ├── ingest.py ├── other-data.csv ├── output.png ├── report.html └── run.py
解决方案:将目录按照类别进行组织,例如数据,日志,代码等。
4. Git提交带有源代码的数据
现在大多数人都可以控制他们的代码版本(如果不使用,那是另一个错误!参见git)。为了共享数据,可能想将数据文件添加到版本控制中。如果是很小的文件还可以,但是git并没有对数据文件进行优化,尤其是大文件。
git add data.csv
解决方案:使用问题1中提到的工具来存储和共享数据。如果确实要对控制数据进行版本控制,请参阅d6tpipe,DVC和Git大文件存储。
5. 编写函数而不是DAG
有足够的数据,接下来谈谈实际的代码!由于在学习代码时首先要学习的内容之一就是函数,因此数据科学代码通常被组织为一系列线性运行的函数。这可能会导致几个问题。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train) model = sklearn.svm.SVC() model.fit(df_train.iloc[:,:-1], df_train['y'])
解决方案:最好将数据科学代码编写为一组任务,并且它们之间具有依赖性,而不是线性链接函数。使用d6tflow或airflow。
6. 循环
和函数一样,for循环是在学习编码时首先要学习的东西。它们易于理解,但它们速度慢且过于冗长,通常表示您不知道有向量化的替代方案。
x = range(10) avg = sum(x)/len(x); std = math.sqrt(sum((i-avg)**2 for i in x)/len(x)); zscore = [(i-avg)/std for x] # should be: scipy.stats.zscore(x) # or groupavg = [] for i in df['g'].unique(): dfg = df[df[g']==i] groupavg.append(dfg['g'].mean()) # should be: df.groupby('g').mean()
解决方案:Numpy,scipy和pandas具有向量化功能,可用于大多数的循环。
7. 不编写单元测试
随着数据,参数或用户输入的更改,您的代码可能会中断,有时您可能不会注意到。这可能会导致错误的输出,如果有人根据您的输出做出决策,那么错误的数据将导致错误的决策!
解决方案:使用assert语句检查数据。pandas有相等测试,d6tstack有数据摄取和检查,d6tjoin数据连接。代码示例:
assert df['id'].unique().shape[0] == len(ids) # 数据是否有所有的id assert df.isna().sum()<0.9 # 检查缺失的数据 assert df.groupby(['g','date']).size().max() ==1 # 是否有重复的数据 assert d6tjoin.utils.PreJoin([df1,df2],['id','date']).is_all_matched() # 所有的id是否匹配
8. 不记录代码
我明白你着急进行一些分析。您可以一起努力取得成果给客户或老板。然后一个星期后,他们说“请您更新此内容”。您看着您的代码,不记得为什么要这么做。现在想象其他人需要运行它。
def some_complicated_function(data):
data = data[data['column']!='wrong']
data = data.groupby('date').apply(lambda x: complicated_stuff(x))
data = data[data['value']<0.9]
return data
解决方案:即使在完成分析之后,也要花点时间记录所做的工作。您将感谢自己,其他人更加感谢!
9. 将数据另存为csv或pickle
回到数据,毕竟是数据科学。就像函数和for循环一样,通常使用CSV和pickle文件,但它们实际上并不是很好。CSV不包含架构,因此每个人都必须再次解析数字和日期。pickle可以解决此问题,但只能在python中工作,并且不能压缩。两者都不是存储大型数据集的良好格式。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train)
解决方案:使用parquet 或其他具有数据格式的二进制数据格式,最好是压缩数据的格式。d6tflow自动将任务的数据输出保存为parquet,不需要你进行处理。
10. 使用jupyter笔记本
让我们以一个有争议的结论来结束:jupyter notebooks 与CSV一样普遍。很多人使用它们,那并不是好事。Jupyter notebooks 促进了上述许多不良的软件工程习惯,尤其是:
入门很容易,但是扩展性很差。
解决方案:使用pycharm或spyder。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12