
作者| 陈祥安
来源|Python学习开发
这篇文章主要和大家分享一些 Python 不一样的技巧,虽然鲜为人知,但非常实用喔!下面就跟随我一起来感受 Python 带给你的乐趣吧。
1.print 打印带有颜色的信息
大家知道 Python 中的信息打印函数 Print,一般我们会使用它打印一些东西,作为一个简单调试。
但是你知道么,这个 Print 打印出来的字体颜色是可以设置的。
一个小例子
def esc(code=0): return f'\033[{code}m' print(esc('31;1;0') + 'Error:'+esc()+'important')
在控制台或者 Pycharm 运行这段代码之后你会得到结果。
Error:important
其中 Error 是红色加下划线的,important 为默认色
其设置格式为:\033[显示方式;前景色;背景色 m
下面可以设置的参数:
说明: 前景色 背景色 颜色 --------------------------------------- 30 40 黑色 31 41 红色 32 42 绿色 33 43 黃色 34 44 蓝色 35 45 紫红色 36 46 青蓝色 37 47 白色 显示方式 意义 ------------------------- 0 终端默认设置 1 高亮显示 4 使用下划线 5 闪烁 7 反白显示 8 不可见 例子: \033[1;31;40m <!--1-高亮显示 31-前景色红色 40-背景色黑色-->
2.在 Python 中使用定时器
今天看到一个比较人性化的定时模块 schedule,目前 star 数为 6432,还是非常的受欢迎,这个模块也是秉承这 For Humans 的原则,这里推荐给大家。地址:dbader/schedule
1.通过 pip 即可安装。
pip install schedule
2.使用案例
import schedule import time def job(): print("I'm working...") schedule.every(10).minutes.do(job) schedule.every().hour.do(job) schedule.every().day.at("10:30").do(job) schedule.every().monday.do(job) schedule.every().wednesday.at("13:15").do(job) schedule.every().minute.at(":17").do(job) while True: schedule.run_pending() time.sleep(1)
从单词的字面意思,你就知道这是做什么的。
举个例子:
schedule.every().monday.do(job)
这句代码作用就是就是单词意思,定时器会每个周一运行函数 job,怎么样是不是很简单。
3.实现一个进度条
from time import sleep def progress(percent=0, width=30): left = width * percent // 100 right = width - left print('\r[', '#' * left, ' ' * right, ']', f' {percent:.0f}%', sep='', end='', flush=True) for i in range(101): progress(i) sleep(0.1)
展示效果
别卧槽了,赶紧快试试吧。
上面的代码中的 print 有几个有用的参数,sep 的作用是已什么为分隔符,默认是空格,这里设置为空串是为了让每个字符之间更紧凑,end 参数作用是已什么结尾,默认是回车换行符,这里为了实现进度条的效果,同样设置为空串。还有最后一个参数 flush,该参数的作用主要是刷新, 默认 flush = False,不刷新,print 到 f 中的内容先存到内存中;而当 flush = True 时它会立即把内容刷新并输出。
4.优雅的打印嵌套类型的数据
大家应该都有印象,在打印 json 字符串或者字典的时候,打印出的一坨东西根本就没有一个层次关系,这里主要说的就是输出格式的问题。
import json my_mapping = {'a': 23, 'b': 42, 'c': 0xc0ffee} print(json.dumps(my_mapping, indent=4, sort_keys=True))
大家可以自己试试只用 print 打印 my_mapping,和例子的这种打印方法。
如果我们打印字典组成的列表呢,这个时候使用 json 的 dumps 方法肯定不行的,不过没关系
用标准库的 pprint 方法同样可以实现上面的方法
import pprint my_mapping = [{'a': 23, 'b': 42, 'c': 0xc0ffee},{'a': 231, 'b': 42, 'c': 0xc0ffee}] pprint.pprint(my_mapping,width=4)
5.功能简单的类使用 namedtuple 和 dataclass 的方式定义
有时候我们想实现一个类似类的功能,但是没有那么复杂的方法需要操作的时候,这个时候就可以考虑下下面两种方法了。
第一个,namedtuple 又称具名元组,带有名字的元组。它作为 Python 标准库 collections 里的一个模块,可以实现一个类似类的一个功能。
from collections import namedtuple # 以前简单的类可以使用 namedtuple 实现。 Car = namedtuple('Car', 'color mileage') my_car = Car('red', 3812.4) print(my_car.color) print(my_car)
但是呢,所有属性需要提前定义好才能使用,比如想使用my_car.name,你就得把代码改成下面的样子。
from collections import namedtuple # 以前简单的类可以使用 namedtuple 实现。 Car = namedtuple('Car', 'color mileage name') my_car = Car('red', 3812.4,"Auto") print(my_car.color) print(my_car.name)
使用 namedtuple 的缺点很明显了。
所以现在更优的方案,那就是 Python3.7 加入到标准库的 dataclass。
其实在 3.6 也可以使用不过需要它被作为第三方的库使用了,使用 pip 安装即可。
使用示例如下:
from dataclasses import dataclass @dataclass class Car: color: str mileage: float my_car = Car('red', 3812.4) print(my_car.color) print(my_car)
6.f-string 的 !r,!a,!s
f-string出现在Python3.6,作为当前最佳的拼接字符串的形式,看下 f-string 的结构
f ' <text> { <expression> <optional !s, !r, or !a> <optional : format specifier> } <text> ... '
其中'!s' 在表达式上调用str(),'!r' 调用表达式上的repr(),'!a' 调用表达式上的ascii()
(1.默认情况下,f-string将使用str(),但如果包含转换标志,则可以确保它们使用repr () !
class Comedian: def __init__(self, first_name, last_name, age): self.first_name = first_name self.last_name = last_name self.age = age def __str__(self): return f"{self.first_name} {self.last_name} is {self.age}." def __repr__(self): return f"{self.first_name} {self.last_name} is {self.age}. Surprise!"
调用
>>> new_comedian = Comedian("Eric", "Idle", "74") >>> f"{new_comedian}" 'Eric Idle is 74.' >>> f"{new_comedian}" 'Eric Idle is 74.' >>> f"{new_comedian!r}" 'Eric Idle is 74. Surprise!'
(2.!a的例子
>>> a = 'some string' >>> f'{a!r}' "'some string'"
等价于
>>> f'{repr(a)}' "'some string'"
(3.!d的例子
类似2
pycon2019有人提出的一个展望!d的功能实现:
在python3.8中已经实现上述功能,不过不再使用!d了改为了f"{a=}"的形式,看过这个视频的发现没有!d应该很懵逼
7.f-string 里"="的应用
在 Python3.8 里有这样一个功能
a = 5 print(f"{a=}")
打印之后的结果为
a=5
是不是很方便,不用你再使用f"a={a}"了。
8.海象运算符:=的是使用
a =6 if b:=a+1>6: print(b)
赋值的时候同时可以进行运算,和 Go 语言的赋值类似了。
代码的运行顺序,首先计算 a+1 得到值为 7,然后把 7 赋值给 b,到这里代码相当于下面这样了
b =7 if b>6: print(b)
怎么样是不是简单了不少,不过这个功能 3.8 开始才能用哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12