
作者 | CDA数据分析研究院
经常遇到有人留言咨询,表明自己想做数据分析,但是面临着很多“困境”,如:
● 大学本科数学专业的,想从事数据分析师,但没项目经验怎么办?应该怎么规划?
● 我一个朋友想做数据分析,她是学物理的,过去有一些工作经验,但是跟数据分析没什么关系,去面试数据分析有压力吗?
● 我是文科生,没有数据分析经验,也没有数理统计基础,想找一份数据分析的工作难吗?
归根溯源,很多人看好数据分析,想要入职数据分析岗位,但是为什么选择数据分析,你真的想清楚弄明白了吗?是单纯的因为看好这个职业的发展?还是因为看到市场需求,单纯的跟风转行?还是对数据热衷,单纯的喜欢数据,被数字吸引?或者还没想好自己想做什么?……
本文将从三个方面给大家解读以上困惑,希望大家能找准自己的定位,并找到自己心仪的工作。
一、选对行业和适合自己的方法技术工具
首先你需要分析现有招聘职位,通过对招聘职位的分析,发现互联网行业以及生活服务、医疗健康等行业人才需求比较迫切,而你要做的是根据当前市场需求,确定自己喜欢的行业,并为之开始准备。
而技术工具方面365 Data Science 层收集了LinkedIn 上 1001 数据科学家的信息,发现目前需求量最大的编程语言为 Python、R语言和 SQL。另外,还要求具备 MATLAB、Java、Scala 和 C/C++ 方面的知识。为了能够脱颖而出,需要熟练掌握 Weka 和 NumPy 这类工具。
确定好自己感兴趣的行业,自己需要掌握的工具,然后你已经成功开启了自己进入数据分析行业的第一步——明确的目标。
二、没有工作经验可能真的不是问题
前面你已经选好了自己想要从事的行业,复盘了自己真实掌握的技能,现在想找数据分析的工作需要解决的就是工作经验的问题。笔者想说,为了降低跳槽成本和求职难度,建议优先选择之前所在行业。
当然,有经验或许更容易找到适合自己的工作,但是不同的项目经验会让你掌握更多的技能好对不同商业模式的深刻理解。例如参加Kaggle这种竞赛课题,或者像CDA数据分析师课程一样跟着老师踏踏实实做几个战线自己能力的项目,多积累你想进入的行业的相关案例。
有时候不得不说,经验是可以用项目来弥补的,重要的是要让自己简历这张薄薄的纸足够丰满。
三、对入职企业有充分认知真的很重要
数据分析,大多数你要接触的是关于数学、编程和技术。但是不能否认的是作为数据分析工作人员,你需要对该公司所在行业有一定的认识——行业发展趋势、客户的痛点、竞争对手等信息。
毕竟手上有粮,心中不慌,为面试做好充足的准备才能保证面试的质量。
事实证明,如果你真的有实力,能力和企业的需求相匹配,找一份数据分析的工作不仅不难,好的工作真的是任君挑选。
这里不仅有全面体系的内容,还有资深的老师言传身授、助教全天候的学习路径指导,以及人工安排的监督学习机制,更重要的是你能认识一群小伙伴,一起从无到有完成一个数据分析项目,一起打怪升级,一起成为合格优秀的数据分析师。
在这里,你将掌握如何建置数据仓库、使用可视化方法发现数据中的模式规律、使用统计分析方法进行验证、结合数据建模技术进行预测并清晰传达你的洞察。毕业后,你将成为各大企业抢手的数据分析师。
【拓展资讯】
我们的师资
李奇
微软Excel MVP(Excel最有价值专家)/经管之家签约讲师/中国电子表格应用大会主席
曾在IBM中国担任销售管理团队数据分析项目组长及德勤北京所的数据分析高级咨询顾问。专精于企业数据分析、设计及实施商业智能业务解决方案、软件开发及SQL、Excel相关数据分析课程培训等。
傅老师
金融数学博士/CDA数据分析研究院金牌讲师
主要从事金融数学,金融数据分析等领域的研究,发表SCI,EI,CSSCI核心期刊论文多篇。在具体行业方面,傅教授先后担任过咨询公司、互联网金融机构、数据管理公司的高级数据分析顾问,先后参与过客户估值、反欺诈识别、舆情分析等数据分析项目,有着丰富的行业经验。
丁亚军
CDA数据分析师金牌讲师/数据分析总监
现任职于南京上度市场咨询有限公司,SAS、SPSS 软件讲师、中国学习路径图国际中心技术顾问。曾参与2012 国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核、中国卫生状况调查、江苏广电 CRM 数据挖掘等大型数据处理项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10