
作者 | Mariya Fox
编译 | 顾家彤、彭艺
人工智能已经成为技术圈的热点话题。它不仅改变了人们的生活,也彻底改变了你能想到的所有产业。
不过,大众对人工智能还有着不同的认识。有些人认为人工智能不好,因为他们听说人工智能在未来会取代一些人的岗位。而人工智能的支持者认为,人工智能是一个社会发展的推动因素,它将通过自动化来减轻负担,让人们的生活更加便捷。
不管你是否喜欢人工智能,如果你对人工智能在未来的影响感兴趣,那么请看看这篇文章,我们将介绍一些主导人工智能发展的趋势。
启用人工智能的芯片将成为主流
与其他技术和软件工具不同,人工智能主要依赖专业的处理器。为了适应人工智能的复杂需求,芯片制造商将研发能够运行启用人工智能的特制芯片。甚至像谷歌、脸书和亚马逊等科技巨头也会在这些特制芯片上投入更多资金。这些芯片会被用于与人工智能相关的特殊用途,比如自然语言处理、计算机视觉领域和语音识别。
人工智能和物联网在边缘计算层相遇
2019年是不同技术与人工智能融合的一年。物联网将在边缘计算层与人工智能携手合作。产业物联网将利用人工智能的强大功能进行根本原因分析、执行机器的预测性维护和自动检测问题。
我们将在2019年看到分布式人工智能的兴起。智能将被分散,并且将更靠近正在进行例行检查的资产和设备。由神经网络驱动的高度复杂的机器学习模型将被优化,以便在边缘运行。
迎接自动化机器学习系统
自动化机器学习系统是2019年人工智能产业最显著的发展趋势之一。有了自动学习的能力,开发者能够修补机器学习模型,创造准备好迎接未来人工智能挑战的机器学习新模型。
自动化机器学习系统将介于认知应用程序编程接口和定制机器学习平台之间。自动化机器学习系统最大的优势是,它向开发者提供了他们要求的自定义选项,同时简化了工作流程。当你把数据和可移植性相结合,自动化学习系统可以为你提供其他人工智能技术不具有的灵活性。
拥抱智能运维
当人工智能用于应用程序时,它将改变我们管理基础架构的方式。 DevOps将被智能运维取代,它将使你的IT员工能够进行精确的根本原因分析。此外,它还可以让你轻松地从庞大的数据库中立即找到有用的见解和模式。大型企业和云供应商将受益于DevOps与人工智能的融合。
神经网络集成
在开发神经网络模型时,人工智能开发人员将面临的最大挑战之一是选择最佳框架。有了市场上的数十种人工智能工具,选择最好的人工智能开发工具可能不像以前那么容易。不同神经网络工具包之间缺乏集成性和兼容性,这阻碍了人工智能的采用。微软和脸书等科技巨头已经在开发开放式神经网络交换(ONNX),允许开发人员跨越多个框架,重新使用神经网络模型。
专业的人工智能系统成为现实
市场对专业系统的需求将在2019年成倍增长。各组织拥有的数据有限,但他们想要的是专业数据。这样的需求会驱动企业掌握可以帮助组织在内部生成高质量人工智能数据的工具。
2019年,重点将从数据量转移到数据质量。这将为可以在现实世界中发挥作用的人工智能奠定基础。企业将寻求能够专业人工智能解决方案提供商,帮助企业访问关键数据源,理解非结构化数据。
人工智能技术将决定你的命运
虽然人工智能已经改变了你能想到的所有行业,但业界仍然缺乏拥有大量人工智能技能的人才。Espressive(加拿大电脑软件公司)的首席执行官帕特卡尔·霍恩(Pat Calhoun)说:“大多数组织都希望将人工智能作为数字化转型的一部分,但没有兑现承诺——让开发人员、人工智能专家和语言学家开发解决方案,甚至没有培养预先构建解决方案的引擎。
Awake Security(美国加利福尼亚州的威胁检测厂商)的首席执行官拉胡尔·卡什亚普(Rahul Kashyap)补充说:“有这么多人工智能驱动解决方案,企业现在应该更敏锐地了解他们的人工智能解决方案的‘黑匣子’中发生的事情。”他继续说道:“人工智能算法的训练、结构化或通知方式可能会导致输出的显著差异。适用于一家公司的正确方程将不适用于另一家公司。”
人工智能可能会被不法之徒利用
就像硬币有正反两面一样,人工智能也有正面和负面影响。信息安全专家将使用人工智能来快速检测恶意活动。借助人工智能驱动的响应和机器学习算法,误报将减少90%。人工智能如果落入不法分子手中,网络犯罪分子将滥用它来完成他们的恶意企图。通过自动化,网络黑客的军队可以更成功地发动致命攻击。这将迫使企业以毒攻毒,投资人工智能驱动的安全解决方案。这些方案能够保护他们免受人工智能发起的攻击。
人工智能驱动的数据转化
2019年,人工智能无处不在。从网络应用到医疗保健系统,从航空公司到酒店预订系统等,我们能在每个地方看到人工智能,它将处于数字化转型的最前沿。
夏威夷大学IT部门主席兼教授董贝博士(Dr.Tung Bui)说:“由于制度、政治和社会原因,人工智能发展需要时间。我认为人工智能的最大趋势将是加速数字化转型,使现有的业务系统更加智能化。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14